Используемая литература
1. Алешин И. М., Алпатов В. В., Васильев А. Е., Бургучев С. С., Холодков К. И., Передерин Ф. В. Опыт создания оперативной службы сбора данных сети наземных станций глобальных навигационных спутниковых систем // Вестник КРАУНЦ. Науки о Земле. 2015. Вып. 25. С. 1–4.
2. Алпатов В. В., Куницын В. Е., Лапшин В. Б., Романов А. А., Тасенко С. В. Опыт создания Росгидрометом сети радиотомографии для исследования и мониторинга ионосферы // Гелиогеофизические исследования. 2012. Вып. 2. С. 60–71.
3. Алпатов В. В., Лапшин В. Б., Репин А. Ю., Тасенко С. В. Перспективы развития сети радиотомографии Росгидромета // Гелиогеофизические исследования. 2013. Вып. 5. С. 74–84.
4. Алпатов В. В., Будников П. А., Васильев А. Е. [и др.] Сеть радиотомографии Росгидромета: принципы создания, результаты работы, перспективы // Распространение радиоволн : сб. XXIV Всерос. науч. конф. : в 2 т. Иркутск, 2014. Т. 1. С. 46–53.
5. Belehaki A., Tsagouri I., Altadill D. [et al.] An overview of methodologies for real-time detection, characterisation and tracking of traveling ionospheric disturbances developed in the TechTIDE project // Journal of Space Weather and Space Climate. 2020. Vol. 10. DOI: https://doi.org/10.1051/swsc/2020043.
6. Beniguel Y., Angling M., Banfi E. [et al.] Ionospheric effects on GNSS performance // 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) & European Workshop on GNSS Signals and Signal Processing. 2012. DOI: 10.1109/NAVITEC.2012.6423122.
7. Cherniak I., Zakharenkova I., Redmon R. J. Dynamics of the high‐latitude ionospheric irregularities during the 17 March 2015 St. Patrick's Day storm: Ground‐based GPS measurements // Space Weather. 2015. Vol. 13. P. 585–597. DOI: https://doi.org/10.1002/2015SW001237.
8. Ding F., Wan W., Liu L., Afraimovich E. L., Voeykov S. V., Perevalova N. P. A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005 // Journal of Geophysical Research: Space Physics. 2008. Vol. 113, A00A01. DOI: 10.1029/2008JA013037.
9. Dyrud L., Jovancevic A., Brown A., Wilson D., Ganguly S. Ionospheric Measurement with GPS: Receiver Techniques and Methods // Radio Science. 2008. Vol. 43, RS6001. DOI: 10.1029/2007RS003770.
10. Figueiredo C. A. O. B., Wrasse C. M., Takahashi H., Otsuka Y., Shiokawa K., Barros D. Large‐scale traveling ionospheric disturbances observed by GPS dTEC maps over North and South America on Saint Patrick’s Day storm in 2015 // Journal of Geophysical Research: Space Physics. 2017. Vol. 122. P. 4755–4763. DOI: 10.1002/2016JA023417.
11. Hapgood M. A. Towards a scientific understanding of the risk from extreme space weather // Advances in Space Research. 2011. Vol. 47, Is. 12. P. 2059–2072. DOI: 10.1016/j.asr.2010.02.007.
12. Hernández-Pajares M., Juan J. M., Sanz J., Aragón-Àngel A. Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions // Radio Science. 2012. Vol. 47, RS0K02. DOI: 10.1029/2011RS004951.
13. Hernández-Pajares M. [et al.] MONITOR ionospheric monitoring system: Analysis of perturbed days affecting SBAS performance // Proceedings of the ION 2015 Pacific PNT Meeting. Honolulu, Hawaii : Institute of Navigation, 2015. P. 970–978.
14. Hunsucker R. D., Hargreaves J. K. The High-Latitude Ionosphere and its Effects on Radio Propagation. Cambridge, UK : Cambridge University Press, 2002. 480 p.
15. Juan J. M., Sanz J., Rovira-Garcia A., González-Casado G., Ibáñez D., Orus R. AATR an ionospheric activity indicator specifically based on GNSS measurements // Journal of Space Weather and Space Climate. 2018. Vol. 8, A14. DOI: https://doi.org/10.1051/swsc/2017044.
16. Juan J. M., Sanz J., González-Casado G., Timoté C., Tölle J., Magdaleno S., Rupiewicz J., Mielich J. Statistical Analysis of the Results: Assessment of the impact on aerospace and ground systems. 2019. DOI: 10.5281/zenodo.3453687.
17. Kauristie K., Andries J., Beck P. [et al.] Space Weather Services for Civil Aviation—Challenges and Solutions // Remote Sensing. 2021. Vol. 13, Is. 18. 3685. DOI: https://doi.org/10.3390/rs13183685.
18. Pancheva D., Mukhtarov P., Andonov B. Global structure of ionospheric TEC anomalies driven by geomagnetic storms // Journal of Atmospheric and Solar-Terrestrial Physics. 2016. Vol. 145. P. 170–182. DOI: 10.1016/j.jastp.2016.04.008.
19. Ren X., Le X., Mei D., Liu H., Zhang X. IROTI: a new index to detect and identify traveling ionospheric disturbances and equatorial plasma bubbles // GPS Solutions. 2024. Vol. 28, 77. DOI: https://doi.org/10.1007/s10291-023-01545-y.
20. Robyn A. D. F., Kumar V. V., Boteler D. H., Terkildsen M. B. Occurrence rate and duration of space weather impacts on high-frequency radio communication used by aviation // Journal of Space Weather and Space Climate. 2022. Vol. 12, 13. DOI: https://doi.org/10.1051/swsc/2022017.
21. Talwinder S., Manuel H.-P., Enric M., Alberto G.-R., Germon O.-P. GPS as a solar observational instrument: Real-time estimation of EUV photons flux rate during strong, medium, and weak solar flares // Journal of Geophysical Research: Space Physics. 2015. Vol. 120. P. 10,211–10,225. DOI: 10.1002/2015JA021824.
22. Tsugawa T., Saito A. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan // Journal of Geophysical Research: Space Physics. 2004. Vol. 109, A06302. DOI: 10.1029/2003JA010302.
23. Voeykov S. V., Yasyukevich A. S., Edemskiy I. K., Perevalova N. P., Yasyukevich Yu. V. WTEC: A new index to estimate the intensity of ionospheric disturbances // Results in Physics. 2018. Vol. 11. P. 1056–1057. DOI: 10.1016/j.rinp.2018.10.050.