Используемая литература
1. Бердичевский М.Н., Ваньян Л.Л., Дмитриев В.И. Интерпретация глубинных магнитотеллурических зондирований. I. Влияние приповерхностной проводимости // Физика Земли. 1986. № 12. С. 24-38.
2. Бердичевский М.Н., Дмитриев В.И. Модели и методы магнитотеллурики. М.: Научный мир, 2009. 680 с.
3. Жамалетдинов А.А., Петрищев М.С. Квазитрехмерная модель электропроводности литосферы Фенноскандинавского щита по результатам экспериментов BEAR и FENICS // Доклады академии наук. 2015. Т. 463. № 3. С. 337-342.
4. Зингер Б.Ш. Учёт статических искажений в магнитотеллурике. Обзор // Физика Земли. 1992. № 5. С. 53-70.
5. Левков Э.А. Гляциотектоника. Минск: Наука и техника, 1980. 280 с.
6. Рокитянский И.И. Глубинные магнитотеллурические зондирования при наличии искажений от неоднородностей // Геофизический журнал. 1982. Т. 4. № 3. С. 54-62.
7. Рокитянский И.И. Исследование аномалий электропроводности методом магнитовариационного профилирования. Киев: Наукова думка, 1975. 279 с.
8. Суконкин М.А., Пушкарев П.Ю. Анализ синтетических магнитотеллурических данных, рассчитанных для геоэлектрической модели с приповерхностными неоднородностями // Геофизика. 2023. Вып. 6. С. 65-69.
9. Суконкин М.А., Пушкарев П.Ю. Использование синтетических магнитотеллурических данных для оценки эффективности методов, основанных на локально-региональном разложении тензора импеданса // Вестник Московского университета. Серия 4: Геология. 2024. Вып. 6. С. 185-196.
10. Árnason K., Eysteinsson H., Hersir G.P. Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland // Geothermics. 2010. Vol. 39. № 1. P. 13-34.
11. Avdeev D.V., Godneva G.S., Zinger B.Sh., Fainberg E.B. Spatial Filtering of Local Magnetotelluric Field Distortions // Izvestiya, Earth Physics. 1990. Vol. 26. № 10. P. 813-818.
12. Avdeeva A., Moorkamp M., Avdeev D., Jegen M., Miensopust M. Three-Dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix // Geophysical Journal International. 2015. Vol. 202. № 1. P. 464-481.
13. Bahr K. Interpretation of magnetotelluric impedance tensor: regional, induction and local telluric distortion // Journal of Geophysics. 1988. Vol. 62. P. 119-127.
14. Berdichevsky M.N., Vanyan L.L., Dmitriev V.I. Methods used in the USSR to reduce near-surface inhomogeneity effects on deep magnetotelluric sounding // Physics of the Earth and Planetary Interiors. 1989. Vol. 53. № 3-4. P. 194-206.
15. Berdichevsky M.N., Vanyan L.L., Kuznetsov V.A., Levadny V.T., Mandelbaum M.M., Nechaeva G.P., Okulessky B.A., Shilovsky P.P., Shpak I.P. Geoelectrical model of the Baikal region // Physics of the Earth and Planetary Interiors. 1980. Vol. 22. P. 1-11.
16. Bibby H.M., Caldwell T.G., Brown C. Determinable and non-determinable parameters of galvanic distortion in magnetotellurics // Geophysical Journal International. 2005. Vol. 163. P. 915-930.
17. Booker J.R., Favetto A., Pomposiello M.C. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina // Nature. 2004. Vol. 429. P. 399-403.
18. Caldwell T.G., Bibby H.M., Brown C. The magnetotelluric phase tensor // Geophysical Journal International. 2004. Vol. 158. P. 457-469.
19. Chave A.D., Jones A. Electric and magnetic field galvanic distortion decomposition of BC87 data // Journal of Geomagnetism and Geoelectricity. 1997. Vol. 49. P. 767-789.
20. Chave A.D., Jones A.G. The magnetotelluric method: Theory and practice. 4. The magnetotelluric response function // Cambridge: Cambridge University Press, 2012. P. 122-160.
21. Chave A.D., Smith J.T. On electric and magnetic galvanic distortion tensor decompositions // Journal of Geophysical Research. 1994. Vol. 99. P. 4669-4682.
22. Cumming W., Mackie R. Resistivity imaging of geothermal resources using 1D, 2D and 3D MT inversion and TDEM static shift correction illustrated by a Glass Mountain case history // Proceedings World Geothermal Congress. 2010. P. 25-29.
23. Dai T., Li Y., Shao G., Lu J. Galvanic distortion decomposition of magnetotelluric impedance tensors in 1-D electrical anisotropic media // Geophysical Journal International. 2025. Vol. 240. P. 212-232.
24. Delhaye R., Rath V., Jones A.G., Muller M.R., Reay D. Correcting for static shift of magnetotelluric data with airborne electromagnetic measurements: A case study from Rathlin Basin, Northern Ireland // Geophysical Journal International. 2017. Vol. 210. № 3. P. 1461-1476.
25. Gómez-Treviño E., Romo J.M., Esparza F.J. Quadratic solution for the 2-D magnetotelluric impedance tensor distorted by 3-D electro-galvanic effects // Geophysical Journal International. 2014. Vol. 198. № 3. P. 1795-1804.
26. Groom R.W., Bailey R.C. Analytical investigations of the effects of near surface three dimensional galvanic scatterers on MT tensor decomposition // Geophysics. 1991. Vol. 56. P. 496-518.
27. Groom R.W., Bailey R.C. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion // Journal of Geophysical Research. 1989. Vol. 94. P. 1913-1925.
28. Heise W., Caldwell T.G., Bibby H.M., Brown C. Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand // Geophysical Journal International. 2008. Vol. 173. № 2. P. 740-750.
29. Jifeng Z., Bing F., Leilei S. Recognition and correction of static shift for MT based on wavelets analysis // Coal Geology & Exploration. 2014. Vol. 42. № 4. P. 77-81.
30. Jiracek G.R. Near-surface and topographic distortions in electromagnetic induction // Surveys in Geophysics. 1990. Vol. 11. P. 163-203.
31. Jones A.G. Distortion of magnetotelluric data: its identification and removal // The Magnetotelluric Method: Theory and Practice. Cambridge: Cambridge University Press, 2012. P. 219-302.
32. Jones A.G. Static shift of magnetotelluric data and its removal in a sedimentary basin environment // Geophysics. 1988. Vol. 53. P. 967-978.
33. Jones A.G., Ledo J., Ferguson I.J., Craven J.A., Unsworth M.J., Chouteau M., Spratt J.E. The electrical resistivity of Canada's lithosphere and correlation with other parameters: contributions from Lithoprobe and other programmes // Canadian Journal of Earth Sciences. 2014. Vol. 51. № 6. P. 573-617.
34. Larsen J.C. Removal of local surface conductivity effects from low frequency mantle response curves // Acta Geodaetica, Geophysica et Montanistica Hungarica. 1977. Vol. 12. P. 183-186.
35. McNeice G.W., Jones A.G. Multisite, multifrequency tensor decomposition of magnetotelluric data // Geophysics. 2001. Vol. 66. № 1. P. 158-173.
36. Meju M.A. Joint inversion of TEM and distorted MT soundings: Some effective practical considerations // Geophysics. 1996. Vol. 61. № 1. P. 56-65.
37. Neukirch M., Garcia X., Galiana S. Appraisal of the Magnetotelluric Galvanic Electric Distortion by Optimisation of the Relation between Amplitude and Phase Tensors // arXiv preprint arXiv:1704.09020, 2017.
38. Neukirch M., Garcia X., Galiana S. Appraisal of the magnetotelluric galvanic electric distortion by optimization of the relation between amplitude and phase tensors // Geophysics. 2020. Vol. 85. № 3. P. 79-98.
39. Rahman N., Rosli N., Jia T.Y., Saad R., Rosli F.N., Dan M.F., Anda S.T. Novel approach in static shift correction for magnetotellurics data using 2D electrical resistivity imaging // Research Square, 2024. https://doi.org/10.21203/rs.3.rs-3562955/v1
40. Rung-Arunwan T., Siripunvaraporn W., Utada H. On the Berdichevsky average // Physics of the Earth and Planetary Interiors. 2016. Vol. 253. P. 1-4.
41. Rung-Arunwan T., Siripunvaraporn W., Utada H. Use of ssq rotational invariant of magnetotelluric impedances for estimating informative properties for galvanic distortion // Earth, Planets and Space. 2017. Vol. 69. P. 1-24.
42. Sasaki Y., Meju M.A. Three‐dimensional joint inversion for magnetotelluric resistivity and static shift distributions in complex media // Journal of Geophysical Research: Solid Earth. 2006. Vol. 111. B05101.
43. Semenov V.Yu., Pek J., Ádám A., Jóźwiak W., Ladanivskyy B., Logvinov I.M., Pushkarev P., Vozar J. Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES project // Acta Geophysica. 2008. Vol. 56. № 4. P. 957-981.
44. Siripunvaraporn W., Egbert G. An efficient data-subspace inversion method for 2-D magnetotelluric data // Geophysics. 2000. Vol. 65. № 3. P. 791-803.
45. Sternberg B.K., Washburne J.C., Pellerin L. Correction for the static shift in magnetotellurics using transient electromagnetic soundings // Geophysics. 1988. Vol. 53. № 11. P. 1459-1468.
46. Tang W., Li Y., Oldenburg D.W., Liu J. Removal of galvanic distortion effects in 3D magnetotelluric data by an equivalent source technique // Geophysics. 2018. Vol. 83. № 2. P. 95-107.
47. Unsworth M. Magnetotelluric studies of active continent–continent collisions // Surveys in Geophysics. 2010. Vol. 31. P. 137-161.
48. Ussher G., Harvey C., Johnstone R., Anderson E. Understanding the resistivities observed in geothermal systems // Proceedings World Geothermal Congress. 2000. P. 1915-1920.
49. Zhang P., Roberts R.G., Pedersen L.B. Magnetotelluric strike rules // Geophysics. 1987. Vol. 52. P. 267-278.
50. Zhou H., Guo R., Li M., Yang F., Xu S., Chen M., Wang Y., Tao D., Hu Z., Cui X. An intelligent MT data inversion method with seismic attribute enhancement // IEEE Transactions on Geoscience and Remote Sensing. 2023. Vol. 61. P. 1-14.