Используемая литература
1. Иванов В.Е., Козелов Б.В. Прохождение электронных и протонно-водородных пучков в атмосфере Земли. Апатиты: Изд-во КНЦ РАН, 2001. 260 с.
2. Кузьмин А.К., Мерзлый А.М., Никифоров О.В., Петрукович А.А., Потанин Ю.Н., Садовский А.М., Соколов А.Д., Янаков А.Т. Аннотированный атлас примеров изображений эмиссий в авроральных структурах, зарегистрированных имаджерами и изображающими спектрографами с разных орбит и поверхности земли. Часть 1. Авроральные структуры, возбужденные природными источниками, включая Альфвеновские волны // Гелиогеофизические исследования. 2022. Вып. 36. С. 3-34. DOI: 10.5425/2304-7380_2022_36_3. URL: https://elibrary.ru/
3. Ashrafi M. ASK: Auroral Structure and Kinetics in action // A&G (Astronomy & Geophysics). 2007. V. 48. P. 4.35-4.37. DOI: 10.1111/j.1468-4004.2007.48435.x
4. Akbari H., Semeter J.L. Aspect angle dependence of naturally enhanced ion acoustic lines // Journ. Geophys. Res. Space Physics. 2014. V. 119. P. 5909–5917. DOI: 10.1002/2014JA019835
5. Akbari H., LaBelle J.W., Newman D.L. Langmuir Turbulence in the Auroral Ionosphere: Origins and Effects // Frontiers in Astronomy and Space Sciences. 2021. V. 7. Article 617792. P. 1-22. DOI: 10.3389/fspas.2020.617792
6. Archer W.E., St.-Maurice J.-P., Gallardo-Lacourt B., Perry G.W., Cully C.M., Donovan E., Gillies D.M., Downie R., Smith J., Eurich D. The Vertical Distribution of the Optical Emissions of a Steve and Picket Fence Event // Geophys. Res. Lett. 2019. V. 46. P. 10719-10725. DOI: 10.1029/2019GL084473
7. Bahcivan H., Cosgrove R. Enhanced ion acoustic lines due to strong ion cyclotron wave fields // Ann. Geophys. 2008. V. 26. P. 2081–2095. DOI: 10.5194/angeo-26-2081-2008
8. Bennett C.L., Bourassa N. Improved analysis of STEVE photographs // J. Geophys. Res. Space Phys. 2021. V. 126. e2020JA027843. DOI: 10.1029/2020JA027843
9. Blixt E.M., Grydeland G., Ivchenko N., Hagfors T., La Hoz C., Lanchester B.S., Løvhaug U.P., Trondsen T.S. Dynamic rayed aurora and enhanced ion-acoustic radar echoes // Annales Geophysicae. 2005. V. 23. P. 3–11.
10. Burch J.L. Magnetospheric imaging: promise to realty // Reviews of Geophysics. 2005. V. 43. P. 1-24. DOI: 10.1029/2004RG000156
11. Chaston C.C., Bonnell J.W., Peticolas L.M., Carlson C.W., McFadden J.P., Ergun R.E. Driven Alfven waves and electron acceleration: A FAST case study // Geophys. Res. Lett. 2002. V. 29. № 11. P. 1535. DOI: 10.1029/2001GL013842
12. Chernyshov A.A., Iliasov A., Mogilevsky M.M., Golovchanskaya I.V., Kozelov B.V. Features of wave excitation of the electrostatic ion cyclotron type in the auroral ionosphere // Cosmic Research. 2016. V. 54. № 1. P. 52-60. DOI: 10.1134/S0010952516010044
13. Cresswell G.R., Davis T.N. Observations on pulsating auroras // Journ. Geophys. Res. 1966. V. 71. № 13. P. 3155-3163. DOI: 10.1029/JZ071i013p03155
14. Cresswell G.R. Flaming auroras // Journal of Atmospheric and Terrestrial Physics. 1969. V. 31. P. 179-183.
15. Chu X., Malaspina D., Gallardo-Lacourt B., Liang J., Andersson L., Ma Q., Artemyev A., Liu J., Ergun R.E., Thaller S., Akbari H., Zhao H., Larsen B., Reeves G., Wygant J., Breneman B., Tian S., Connors M., Donovan E., Archer W., MacDonald E.A. Identifying STEVE's Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground // Geophys. Res. Lett. 2019. V. 46. P. 12665–12674. DOI: 10.1029/2019GL082789
16. Collis P.N., Haggstrom I., Kaila K., Rietveld M.T. EISCAT radar observations of enhanced incoherent scatter spectra and their relation to red aurora and field-aligned currents // Geophys. Res. Lett. 1991. V. 18. P. 1031–1034.
17. Dahlgren H., Aikio A., Kaila K., Ivchenko N., Lanchester B.S., Whiter D.K., Marklund G.T. Simultaneous observations of small multi-scale structures in an auroral arc // Journ. Atmos. and Solar-Terr. Phys. 2010. V. 72. P. 633–637. DOI: 10.1016/j.jastp.2010.01.014
18. Dahlgren H., Ivchenko N., Lanchester B.S. Monoenergetic high-energy electron precipitation in thin auroral filaments // Geophys. Res. Lett. 2012. V. 39. L20101. DOI: 10.1029/2012GL053466
19. Dahlgren H., Semeter J.L., Marshall R.A., Zettergren M. The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs // Journ. Geophys. Res.: Space Physics. 2013. V. 118. № 7. DOI: 10.1002/jgra.50415
20. Dhadly M.S., Meriwether J., Conde M., Hampton D. First ever cross comparison of thermospheric wind measured by narrow- and wide-field optical Doppler spectroscopy // Journ. Geophys. Res. Space Phys. 2015. V. 120. P. 9683–9705. DOI: 10.1002/2015JA021316
21. Dhadly M., Emmert J., Drob D., Conde M., Doornbos E., Shepherd G. et al. Seasonal dependence of northern high-latitude upper thermospheric winds: A quiet time climatological study based on ground-based and space-based measurements // Journal of Geophysical Research: Space Physics. 2017. V. 122. № 2. P. 2619–2644. DOI: 10.1002/2016JA023688
22. Dreyer J. A detailed study of auroral fragments. Master’s thesis for the degree of master science. Uppsala University, The University Centre in Svalbard, 2019. 40 p.
23. Dreyer J., Partamies N., Whiter D., Ellingsen P.G., Baddeley L., Buchert S.C. Characteristics of fragmented aurora-like emissions (FAEs) observed on Svalbard // Ann. Geophys. 2021. V. 39. P. 277–288. DOI: 10.5194/angeo-39-277-2021
24. Dyrud L., Semeter J., Oppenheim M. Plasma instabilities in auroral ionospheric density gradients from 120–200 km altitude // Eos Trans. AGU. 2004. V. 85. № 17. Abstract SM51A-0338.
25. Farley D. A plasma instability resulting in field-aligned irregularities in the ionosphere // Journ. Geophys. Res. 1963. V. 68. P. 6083-6097. DOI: 10.1029/JZ068i022p06083
26. Forme F.R.E. A new interpretation of the origin of enhanced ion acoustic fluctuations in the upper ionosphere // Geophys. Res. Lett. 1993. V. 20. P. 2347–2350. DOI: 10.1029/93GL02490
27. Forme F.R.E. Parametric decay of beam-driven Langmuir wave and enhanced ion-acoustic fluctuations in the ionosphere: a weak turbulence approach // Ann. Geophys. 1999. V. 17. P. 1172–1181. DOI: 10.1007/s00585-999-1172-4
28. Forsyth C., Sergeev V.A., Henderson M.G., Nishimura Y., Gallardo-Lacourt B. Physical Processes of Meso-Scale, Dynamic Auroral Forms // Space Sci. Rev. 2020. V. 216. P. 1-46. DOI: 10.1007/s11214-020-00665-y
29. Foster J.C., del Pozo C., Groves K., Saint Maurice J.-P. Radar observations of the onset of current driven instabilities in the topside ionosphere // Geophys. Res. Lett. 1988. V. 15. P. 160–163.
30. Foster J.C., Burke W.J. SAPS: A new categorization for sub-auroral electric fields // EOS Transactions. 2002. V. 83. P. 393. DOI: 10.1029/2002EO000289
31. Gallardo-Lacourt B., Liang J., Nishimura Y., Donovan E. On the origin of STEVE: Particle precipitation or ionospheric skyglow? // Geophysical Research Letters. 2018. V. 45. P. 7968–7973. DOI: 10.1029/2018GL078509
32. Gartlein C.W. Unlocking secrets of northern lights // Nat. Geograph. Mag. 1947. P. 673.
33. Gillies D.M., Liang J., Donovan E., Spanswick E. The apparent motion of STEVE and the Picket Fence phenomena // Geophys. Res. Lett. 2020. V. 47. № 20. e2020GL088980. DOI: 10.1029/2020GL088980
34. Gillies D.M., Liang J., Gallardo-Lacourt B., Donovan E. New insight into the transition from a SAR arc to STEVE // Geophys. Res. Lett. 2023. V. 50. e2022GL101205. DOI: 10.1029/2022GL101205
35. Goertz C.K. Discrete breakup arcs and kinetic Alfvén waves // Physics of Auroral Arc Formation / Ed. by S.-I. Akasofu and J.R. Kan. Washington, D.C.: American Geophysical Union, 1981. V. 25. P. 451–455.
36. Goertz C.K. Kinetic Alfvén waves on auroral field lines // Planetary and Space Science. 1984. V. 32. P. 1387–1392.
37. Goodbody B.C. Radar and Optical Studies of Small Scale Features in the Aurora: The Association of Optical Signatures with Naturally Enhanced Ion Acoustic Lines (NEIALs). Thesis for the degree of Doctor of Philosophy. University of Southampton, 4 May 2014.
38. Grydeland T., La Hoz C., Hagfors T., Blixt E.M., Saito S., Strømme A., Brekke A. Interferometric observations of filamentary structures associated with plasma instability in the auroral ionosphere // Geophys. Res. Lett. 2003. V. 30. P. 1338. DOI: 10.1029/2002GL016362
39. Grydeland T., Blixt E.M., Løvhaug U.P., Hagfors T., La Hoz C., Trondsen T.S. Interferometric radar observations of filamented structures due to plasma instabilities and their relation to dynamic auroral rays // Ann. Geophys. 2004. V. 22. P. 1115–1132. DOI: 10.5194/angeo-22-1115-2004
40. Grocott A., Milan S.E., Baker J.B.H., Freeman M.P., Lester M., Yeoman T.K. Dynamic subauroral ionospheric electric fields observed by the Falkland Islands radar during the course of a geomagnetic storm // Journ. Geophys. Res. 2011. V. 116. № A11. A11202. DOI: 10.1029/2011JA016763
41. Groves K.M. Nonlinear Ionospheric Propagation Effects on UHF and VLF Radio Signals. PhD thesis. Massachusetts Inst of Tech - Cambridge Plasma Fusion Center, 1991.
42. Haerendel G., Olipitz B.U., Buchert S., Bauer O.H., Rieger E., LaHoz C. Optical and radar observations of auroral arcs with emphasis on small-scale structures // Journal of Atmospheric and Terrestrial Physics. 1996. V. 58. P. 71–83.
43. Hallinan T.J., Davis T.N. Small-scale auroral arc distortions // Planet. Space Sci. 1970. V. 18. P. 1735–1735. DOI: 10.1016/0032-0633(70)90007-3
44. Hallinan T.J. Auroral spirals, 2, theory // Journal of Geophysical Research. 1976. V. 81. P. 3959–3965.
45. Hallinan T.J., Davis T.N. Small-scale auroral arc distortions // Planet. Space Sci. 2005. V. 18. P. 1735.
46. Harding B.J., Mende S.B., Triplett C.C., Wu Y.-J.J. A mechanism for the STEVE continuum emission // Geophysical Research Letters. 2020. V. 47. e2020GL087102. DOI: 10.1029/2020GL087102
47. Hunnekuhl M., MacDonald E. Early ground-based work by auroral pioneer Carl Stormer on the high-altitude detached subauroral arcs now known as “STEVE” // Space Weather. 2020. V. 18. № 3. e2019SW002384. DOI: 10.1029/2019SW002384
48. Henderson M.G., Reeves G.D., Murphree J.S. Are north-south aligned auroral structures an ionospheric manifestation of bursty bulk flows? // Geophys. Res. Lett. 1998. V. 25. P. 3737–3740.
49. Hirsch M., Semeter J., Zettergen M., Dahlgren H., Goenka Ch., Sundberg H., Akbari H. Reconstruction of fine scale auroral dynamics // IEEE Transactions on Geoscience and Remote Sensing. 2015. V. 54. № 5. P. 2-14. DOI: 10.1109/TGRS.2015.2505686
50. Hunnekuhl M., MacDonald E. Early Ground-Based Work by Auroral Pioneer Carl Størmer on the High-Altitude Detached Subauroral Arcs Now Known as “STEVE” // Space Weather. 2020. V. 18. e2019SW002384. DOI: 10.1029/2019SW002384
51. Huyghebaert D., Billett D., Chartier A., Chau J.L., Hussey G.C., Hysell D.L., Ivarsen M.F., Mesquita R.L.A., Rojas E., Vierinen J., Young M. The future of auroral E-region plasma turbulence research // Frontiers in Astronomy and Space Science. 2022. DOI: 10.3389/fspas.2022.1062358
52. INCOHERENT SCATTER, Theory, Practice and Science. Collection of lectures given in Cargese, Corsica, 1995. Ed. Denis Alcaydé. Technical Report 97/53. EISCAT Scientific Association, November 1997. 314 p.
53. International auroral atlas. International Union of Geodesy and Geophysics. Edinburgh University Press, 1963. 17 p.
54. Isham B., Rietveld M., Guio P., Forme F., Grydeland T., Mjølhus E. Cavitating Langmuir turbulence in the terrestrial aurora // Phys. Rev. Lett. 2012. V. 108. 105003. DOI: 10.1103/PhysRevLett.108.105003
55. Kataoka R., Chaston Ch., Knudsen D., Lynch K.A., Lysak R.L., Song Y., Rankin R., Murase K., Sakanoi T., Semeter J., Watanabe T.-H., Whiter D. Small-Scale Dynamic Aurora // Space Sci Rev. 2021. V. 217. P. 16-32. DOI: 10.1007/s11214-021-00796-w
56. Knudsen D.J., Burchill J.K., Buchert S.C., Eriksson A.I., Gill R., Wahlund J.-E. et al. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments // Journ. Geophys. Res. Space Phys. 2017. V. 122. № 2. P. 2655–2673. DOI: 10.1002/2016JA022571
57. Kovalev D.V., Smirnov A.P., Dimant Y.S. Modeling of the Farley-Buneman instability in the E-region ionosphere: a new hybrid approach // Ann. Geophys. 2008. V. 26. P. 2853–2870. DOI: 10.5194/angeo-26-2853-2008
58. Kozyra J.U., Nagy A.F., Slater D.W. High-altitude energy source(s) for stable auroral red arcs // Reviews of Geophysics. 1997. V. 35. № 2. P. 155-190. DOI: 10.1029/96RG03194
59. Liang J., Donovan E., Connors M., Gillies D., St-Maurice J.P., Jackel B. et al. Optical spectra and emission altitudes of double-layer STEVE: A case study // Geophys. Res. Lett. 2021. V. 46. P. 13630–13639. DOI: 10.1029/2019GL085639
60. Lyons L.R., Zesta E., Xu Y., Sánchez E.R., Samson J.C., Reeves G.D., Ruohoniemi J.M., Sigwarth J.B. Auroral poleward boundary intensifications and tail bursty flows: A manifestation of a large-scale ULF oscillation? // J. Geophys. Res. 2002. V. 107. № A11. 1352. DOI: 10.1029/2001JA000242
61. MacDonald E.A., Donovan E., Nishimura Y., Case N.A., Gillies D.M., Gallardo-lacourt B. et al. New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere // Science Advances. 2018. V. 4. P. 1-5. DOI: 10.1126/sciadv.aaq0030
62. Mckay D., Paavilainen T., Gustavsson B., Kvammen B., Partamies N. Lumikot: Fast auroral transients during the growth phase of substorms // Geophys. Res. Lett. 2019. V. 46. P. 7214-7221. DOI: 10.1029/2019GL082985
63. Martinis C., Griffin I., Gallardo-Lacourt B., Wroten J., Nishimura Y., Baumgardner J., Knudsen D.J. Rainbow of the night: First direct observation of a SAR arc evolving into STEVE // Geophys. Res. Lett. 2022. V. 49. e2022GL098511. DOI: 10.1029/2022GL098511
64. Mende S.B., Heetderks H., Frey H.U., Lampton M., Geller S.P., Abiad R., Siegmund O.H.W., Tremsin A.S., Spann J., Dougani H., Fuselier S.A., Magoncelli A.L., Bumala M.P., Murphree S., Trondsen T. Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging // Space Sci. Reviews. 2000. V. 91. № 1-2. P. 271–285. DOI: 10.1023/A:1005227915363
65. Mende S.B., Harding B.J., Turner C. Subauroral Green STEVE Arcs: Evidence for Low-Energy Excitation // Geophys. Res. Lett. 2019. V. 46. P. 14256–14262. DOI: 10.1029/2019GL086145
66. Mendillo M., Finan R., Baumgardner J., Wroten J., Martinis C., Cassilas M. A stable auroral red (SAR) arc with multiple emission features // Journ. Geophys. Res. Space Physics. 2016. V. 121. № 10. P. 10564-10577. DOI: 10.1002/2016JA023258
67. Mende S.B., Turner C. Color Ratios of Subauroral (STEVE) Arcs // Journ. Geophys. Res. Space Phys. 2019. V. 124. P. 5945-5955. DOI: 10.1029/2019JA026851
68. Michell R.G., Lynch K.A., Heinselman C.J., Stenbaek-Nielsen H.C. PFISR nightside observations of naturally enhanced ion acoustic lines, and their relation to boundary auroral features // Annales Geophysicae. 2008. V. 26. P. 3623–3639. DOI: 10.5194/angeo-26-3623-2008
69. Michell R.G., Lynch K.A., Heinselman C.J., Stenbaek-Nielsen H.C. High time resolution PFISR and optical observations of naturally enhanced ion acoustic lines // Annales Geophysicae. 2009. V. 27. P. 1457–1467. DOI: 10.5194/angeo-27-1457-2009
70. Michell R.G., Samara M. High-resolution observations of naturally enhanced ion acoustic lines and accompanying auroral fine structures // Journ. Geophys. Res. 2010. V. 115. A03310. DOI: 10.1029/2009JA014661
71. Michell R.G., Samara M. Observability of NEIALs with the Sondrestrom and Poker Flat incoherent scatter radars // Journ. of Atmos. and Solar-Terr. Phys. 2013. V. 105-106. P. 299–307.
72. Michell R.G., Grydeland T., Samara M. Characteristics of Poker Flat Incoherent Scatter Radar (PFISR) naturally enhanced ion-acoustic lines (NEIALs) in relation to auroral forms // Ann. Geophys. 2014. V. 32. P. 1333–1347. DOI: 10.5194/angeo-32-1333-2014
73. Mishin E.V. Artificial Aurora Experiments and Application to Natural Aurora // Front. Astron. Space Sci. 2019. V. 6. 14. DOI: 10.3389/fspas.2019.00014
74. Mishin E., Streltsov A. STEVE and the picket fence: Evidence of feedback-unstable magnetosphere-ionosphere interaction // Geophysical Research Letters. 2019. V. 46. P. 14247-14255. DOI: 10.1029/2019GL085446
75. Mishin E.V., Sreltsov A. On the kinetic theory of subauroral arcs // Journ. Geophys. Res. Space Phys. 2022. V. 127. e2022JA03.
76. Motoba T., Hirahara M. High-resolution auroral acceleration signatures within a highly dynamic onset arc // Geophys. Res. Lett. 2016. V. 43. P. 1793–1801. DOI: 10.1002/2015GL067580
77. Nell A.E., Kosch M.J., Whiter D., Gustavsson B., Aslaksen T. A new auroral phenomenon, the anti-black aurora // Scientific Reports. 2021. V. 11. 1829. DOI: 10.1038/s41598-021-81363-9
78. Nishimura Y., Gallardo-Lacourt B., Zou Y., Mishin E., Knudsen D.J., Donovan E.F. et al. Magnetospheric signatures of STEVE: Implications for the magnetospheric energy source and interhemispheric conjugacy // Geophys. Res. Lett. 2019. V. 46. P. 5637–5644. DOI: 10.1029/2019GL082460
79. Nishimura Y., Yang J., Weygand J.M., Wang W., Kosar B., Donovan E.F., Angelopoulos V., Paxton L., Nishitani N. Magnetospheric conditions for STEVE and SAID: Particle injection, substorm surge and field aligned currents // Journ. Geophys. Res. 2020. V. 125. e2020JA027782. DOI: 10.1029/2020JA027782
80. Nishimura Y., Bruus E., Karvinen E., Martinis C.R., Dyer A., Kangas L., Rikala H.K., Donovan E.F., Nishitani N., Ruohoniemi J.M. Interaction Between Proton Aurora and Stable Auroral Red Arcs Unveiled by Citizen Scientist Photographs // Journ. Geophys. Res. Space Phys. 2022. V. 127. № 7. e2022JA030570. DOI: 10.1029/2022JA030570
81. Nishimura Y., Dyer A., Kangas L., Donovan D., Angelopoulos V. Unsolved problems in Strong Thermal Emission Velocity Enhancement (STEVE) and the picket fence // Front. Astron. Space Sci. 2023. V. 10. 1087974. DOI: 10.3389/fspas.2023.1087974
82. Ogawa Y., Buchert S.C., Fujii R., Nozawa S., Forme F. Naturally enhanced ion-acoustic lines at high altitudes // Annales Geophysicae. 2006. V. 24. P. 3351–3364.
83. Omholt A. The Optical Aurora. Berlin: Springer, 1971. 198 p.
84. Oppenheim M., Otani N., Ronchi C. Saturation of the Farley-Buneman instability via nonlinear electron E×B drifts // J. Geophys. Res.-Space. 1996. V. 101. P. 17273–17286. DOI: 10.1029/96JA01403
85. Otani N.F., Oppenheim M. A saturation mechanism for the Farley-Buneman instability // Geophys. Res. Lett. 1998. V. 25. № 11. P. 1833-1836.
86. Otto A., Lummerzheim D., Zhu H., Lie-Svendsen Ø., Rees M.H., Lanchester B.S. Excitation of tall auroral rays by ohmic heating in field-aligned current filaments at F region heights // Journ. Geophys. Res. 2003. V. 108. № A4. 8017. DOI: 10.1029/2002JA009423
87. Palmroth M., Grandin M., Helin M., Koski P., Oksanen A., Glad M.A., Valonen R., Saari K., Bruus E., Norberg J., Viljanen A., Kauristie K., Verronen P.T. Citizen Scientists Discover a New Auroral Form: Dunes Provide Insight Into the Upper Atmosphere // AGU Advances. 2020. V. 1. e2019AV000133. P. 1-12. DOI: 10.1029/2019AV000133
88. Parnikov S.G., Ievenko I.B., Koltovskoy I.I. Comparison of the SAR-arc, STEVE and Picket Fence dynamics registered at the Maymaga subauroral station on March 1, 2017 // Proceedings. 27 International Symposium on Atmospheric and ocean Optics, Atmospheric Physics. 2021. V. 11916. 119167L. DOI: 10.1117/12.2603112
89. Perry G.W., Gallardo-Lacourt B., Archer W.E., Shepherd S.G., Reimer A.S., Gillies D.M. SuperDarn observations of STEVE. Presentation and Abstract of URSI NRSM, 2021 (virtual), Session G.3.1, 2022. DOI: 10.13140/RG2.230940.05762
90. Rees M.H. Physics and chemistry of the upper atmosphere. Cambridge Univ. Press, 1989. 289 p.
91. Rietveld M.T., Collis P.N., St-Maurice J.-P. Naturally-enhanced ion-acoustic-waves in the auroral ionosphere observed with the EISCAT 933-MHz radar // J. Geophys. Res. 1991. V. 96. P. 19291-19305.
92. Rietveld M.T., Collis P.N., Vaneyken A.P., Løvhaug U.P. Coherent echoes during EISCAT UHF Common Programmes // Journal of Atmospheric and Terrestrial Physics. 1996. V. 58. P. 161–174.
93. Sakanoi T., Okano S., Obuchi Y., Kobayashi T., Eijiri M., Asamura K., Hirahara M. Development of the multi-spectral auroral camera onboard the index satellite // Advances Space Research. 2003. V. 32. № 3. P. 379-384. DOI: 10.1016/S0273-1177(03)90276-6
94. Sedgemore-Schulthess K.J.F., Lockwood M., Trondsen T.S., Lanchester B.S., Rees M.H., Lorentzen D.A., Moen J. Coherent EISCAT Svalbard Radar spectra from the dayside cusp/cleft and their implications for transient field-aligned currents // Journ. Geophys. Res. 1999. V. 104. P. 24613–24624.
95. Semeter J., Lummerzheim D., Haerendel G. Simultaneous Multispectral Imaging of the Discrete Aurora // Journal of Atmospheric and Solar-Terrestrial Physics. 2001. V. 63. P. 1-15.
96. Semeter J., Heinselman C.J., Sivjee G.G., Frey H.U., Bonnell J.W. Ionospheric response to wave-accelerated electrons at the poleward auroral boundary // Journ. Geophys. Res. 2005. V. 110. A11310. DOI: 10.1029/2005JA011226
97. Semeter J., Kamalabadi F. Determination of primary electron spectra from incoherent scatter radar measurements of the auroral E-region // Radio Sci. 2005. V. 40. RS2006. DOI: 10.1029/2004RS003042
98. Semeter J., Zettergren M., Diaz M., Mende S. Wave dispersion and the discrete aurora: New constraints derived from high-speed imagery // Journ. Geophys. Res. 2008. V. 113. A12208. DOI: 10.1029/2008JA013122
99. Semeter J.S., Hunnekuhl M., MacDonald E., Hirsch M., Zeller N., Chernenkoff A., Wang J. The Mysterious Green Streaks Below STEVE // AGU Advances. 2020. V. 1. e2020AV000183. DOI: 10.1029/2020AV000183
100. Spiro R.W., Heelis R.H., Hanson W.B. Rapid sub-auroral ion drifts observed by Atmospheric Explorer C // Geophys. Res. Lett. 1979. V. 6. P. 657–660.
101. Størmer C. The polar aurora. London: Oxford University Press, 1955. 403 p.
102. Strickland D.J., Jasperse J.K., Whalen J.R. Dependence of auroral FUV emissions on the incident electron spectrum and neutral atmosphere // Journ. Geophys. Res. 1983. V. 88. № A10. P. 8051-8062.
103. Strømme A., Belyey V., Grydeland T., La Hoz C., Løvhaug U.P., Isham B. Evidence of naturally occurring wave-wave interactions in the polar ionosphere and its relation to naturally enhanced ion acoustic lines // Geophys. Res. Lett. 2005. V. 35. L05103. DOI: 10.1029/2004GL020239
104. Sullivan J.M., Lockwood M., Lanchester B.S., Kontar E.P., Ivchenko N., Dahlgren H., Whiter D.K. An optical study of multiple NEIAL events driven by low energy electron precipitation // Ann. Geophys. 2008. V. 26. P. 2435–2447. DOI: 10.5194/angeo-26-2435-2008
105. Wahlund J.-E., Forme F.R.E., Opgenoorth H.J., Persson M.A.L., Mishin E.V., Volokitin A.S. Scattering of electromagnetic waves from a plasma – enhanced ion acoustic fluctuations due to ion-ion two-stream instabilities // Geophys. Res. Lett. 1992. V. 19. P. 1919–1922.
106. Wang H., Lühr H. The efficiency of mechanisms driving Subauroral Polarization Streams (SAPS) // Ann. Geophys. 2011. V. 29. P. 1277–1286. DOI: 10.5194/angeo-29-1277-2011
107. Wannberg G., Wolf I., Vanhainen L., Koskenniemi K., Röttger J., Postila M., Markkanen J., Jacobsen R., Stenberg A., Larsen R., Eliassen S., Heck S., Huuskonen A. The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design // Radio Sci. 1997. V. 32. P. 2283–2307.
108. Whiter D.K., Sundberg H., Lanchester B.S., Dreyer J., Partamies N., Ivchenko N., Di Fraia M.Z., Oliver R., Serpell-Stevens A., Shaw-Diaz T., Braunersreuther T. Fine-scale dynamics of fragmented aurora-like emissions // Annales Geophysicae. 2021. V. 39. P. 975–989. DOI: 10.5194/angeo-39-975-2021
109. Yadav S., Shiokawa K., Otsuka Y., Connors M., St Maurice J.-P. Multi-wavelength imaging observations of STEVE at Athabasca, Canada // Journ. Geophys. Res. Space Physics. 2021. V. 126. e2020JA028622. DOI: 10.