Используемая литература
1. Данилов А.Д., Константинова А.В. Вариации трендов foF2 сезоном и временем суток // Геомагнетизм и аэрономия. T. 55. № 1. С. 56–63. 2015.
2. Данилов А.Д., Константинова А.В. Тренды foF2 и 24-й цикл солнечной активности. // Гелиогеофизические исследования. Выпуск 23, С. 42–49. 2019
3. Данилов А.Д., Константинова А.В. Долговременные вариации параметров средней и верхней атмосферы и ионосферы (обзор) // Геомагнетизм и аэрономия. Т. 60. № 4. С. 411-435. 2020а.
4. Данилов А.Д., Константинова А.В. Тренды параметров слоя F2 и 24-й цикл солнечной активности // Геомагнетизм и аэрономия. Т. 60. № 5. С. 619–630. 2020б.
5. Данилов А.Д., Константинова А.В. Дальнейший анализ трендов foF2 до 2018-2019 гг. // Гелиогеофизические исследования. Выпуск 27. С. 46-54. 2020в
6. Balan, N., Bailey, G., Moffett, R. Modeling studies of ionospheric variations during an intense solar cycle. // J. Geophys. Res. V. 99. No. A9. P. 17,467–17,475. 1994. https://doi.org/10.1029/94JA01262
7. Balough, A., Hudson, H.S., Petrovary, K., von Steiger, R. Introduction to the solar cycle: Overview of causes and consequences // Space Sci. Rev. V. 186. No. 1-4. P. 1-15. 2014. https://doi.org/10.1007/s11214-014-0125-8.
8. Bilitza D. International Reference Ionosphere 1990. National Space Science Data Center, NSSDC 90-92, Greenbelt, Maryland, 1990.
9. Chen Y., Libo L., Wan W. Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009? // J. Geophys. Res. V. 116. A04304. doi:10.1029/2010JA016301. 2011.
10. Chen Y., Libo L., Le H., Wan W. How does ionospheric TEC vary if solar EUV irradiance continuously decreases? // Earth Planets Space. V. 66. doi:10.1186/1880-5981-66-52. 2014.
11. Chen Y., Libo L., Le H., Wan W. Ionospheric variations under extremely low solar EUV condition // Paper presented at the 10th Workshop on Long-term Changes and Trends in the Atmosphere. Hefei, China, May 14– 18, 2018.
12. Danilov A. D. Seasonal and diurnal variations in foF2 trends // J. Geophys. Res.− Space. V. 120. P. 3868–3882. doi:10.1002/ 2014JA020971. 2015.
13. Danilov A.D., Konstantinova A.V. Trends in foF2 and the 24th solar activity cycle // Adv. Space Research V. 65. P. 959-965. https://doi.org/10.1016/j.asr.2019.10.038. 2020a
14. Danilov A.D., Konstantinova A.V. Trends in hmF2 and the 24th solar activity cycle // Adv. Space Research V. 66. P. 292-298. 2020b.
15. De Haro Barbas B.F., Elias A. G. Effect of the inclusion of solar cycle 24 in the calculation of foF2 long-term trend for two Japanese ionospheric stations // Pure Appl. Geophys. V. 177. P. 1071–1078. 2020.
16. De Haro Barbás D.F, EliasA.G., Fagre M and Zossi B.F. Incidence of solar cycle 24 in nighttime foF2 longterm trends for two Japanese ionospheric stations // Stud. Geophys. Geod. V. 64. doi: 10.1007/s11 200-021-0548 9 2020.
17. Elias, A. G. Trends in the F2 ionospheric layer due to long-term variations in the Earth’s magnetic field, J. Atmos. Sol. Terr. Phys., 71, 1602-1609, 489 doi:10.1016/j.jastp.2009.05.014. 2009.
18. Emmert J. T., Lean J. L., Picone J. M. Record‐low thermospheric density during the 2008 solar minimum // Geophys. Res. Lett. V. 37. L12102. doi:10.1029/2010GL043671. 2010.
19. Laštovička J. Stability of solar correction for calculating ionospheric trends? // Paper presented at the 9th Workshop on long-term changes and trends in the atmosphere, Kühlungsborn, Germany, September 19–23, 2016.
20. Laštovička J. Is the relation between ionospheric parameters and solar proxies stable? // Geophys. Res. Letters. V. 46. N 24. P. 14208–14213. https://doi.org/10.1029/2019GL085033. 2019.
21. Laštovička J. What is the optimum solar proxy for long-term ionospheric investigations? // Adv. Space Res. V. 67. P. 2–8. 2021a. https://doi.org/10.1016/j.asr.2020.07.025
22. Laštovička J. The best solar activity proxy for long-term ionospheric investigations // Adv. Space Res. V. 68. P. 2354-2360. 2021b.
23. Laštovička J., Buresova D. What is happening with the Sun – and ionospheric impact? // A preprint. 2022.
24. Laštovička J., Akmaev R.A., Beig G., Bremer J., Emmert J.T., Jacobi C., Jarvis M.J., Nedoluha G., Portnyagin Y.I., Ulich T. Emerging pattern of global change in the upper atmosphere and ionosphere // Ann. Geophysicae. V. 26. N 5. P. 1255–1268. 2008.
25. Livingstone, W., Penn, M. J., Svalgaard, L. Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux. Astrophysical Journal Letters, V. 757. No. 1, P. L8. 2012. https://doi.org/10.1088/2041‐8205/757/1/L8
26. Sivakandan M., J. Mielich J., Renkwitz T., Chau J. L., Jaen J., and Lastovicka J. // Long-term variations and trends in the E, F and sporadic E (Es) layer over Juliusruh, Europe. Space Weather 2022 (presented).
27. Solomon S. C., Qian L., Didkovsky L. V., Viereck R. A., Woods T. N. Causes of low thermospheric density during the 2007–2009 solar minimum // J. Geophys. Res. V. 116. A00H07. doi:10.1029/2011JA016508. 2011.
28. Solomon S. C., Qian L., Burns A. G. The anomalous ionosphere between solar cycles 23 and 24 // J. Geophys. Res.− Space. V. 118. P. 6524–6535. 2013.
29. Yue, X., Liu L., Wan W., Wei Y., Ren Z. Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long-term trend over the past century, J. Geophys. Res., 113, A10301, doi:10.1029/2007JA012995.566, 2008.