Используемая литература
Вот список с порядковыми номерами и точками перед каждой строкой:
1. Деминов М.Г., Шубин В.Н. Эмпирическая модель положения главного ионосферного провала, Геомагнетизм и аэрономия. Т. 58. № 3. C. 366–373. 2018.
2. Намгаладзе А.А., Кореньков Ю.Н., Клименко В.В., Карпов И.В., Бессараб Ф.С., Суроткин В.А., Глущенко Т.А., Наумова Н.М. Глобальная численная модель термосферы, ионосферы и протоносферы Земли, Геомагнетизм и аэрономия. Т. 30, № 4. С. 612-619. 1990.
3. Шубин В.Н. Глобальная эмпирическая модель критической частоты F2-слоя ионосферы для спокойных геомагнитных условий, Геомагнетизм и аэрономия. Т. 57. № 4. C. 1–13. 2017.
4. Шубин В.Н., Деминов М.Г. Глобальная динамическая модель критической частоты F2 слоя ионосферы, Геомагнетизм и аэрономия. Т. 59. № 4. С. 461–473. doi:10.1134/S0016794019040151. 2019.
5. Araujo‐Pradere E.A., Fuller‐Rowell T.J., Codrescu M.V. STORM: An empirical storm‐time ionospheric correction model: 1.Model description, Radio Sci. 37(5). 1070. doi:10.1029/2001RS002467. 2002.
6. Bilitza D., Reinisch B.W. International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res. 42. 599-609. doi: 10.1016/j.asr.2007.07.048. 2008.
7. Bilitza D., Altadill D., Zhang, Y., Mertens C., Truhlik V., et al. The international reference ionosphere 2012 – a model of international collaboration, J. Space Weather Space Clim. 4, A07, doi:10.1051/swsc/2014004. 2014.
8. Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions, Space Weather. 15. 418–429. doi:10.1002/2016SW001593. 2017.
9. Buresova D., McKinnell L.A., SindelarovaT., De La Morena B.A. Evaluation of the STORM model storm-time corrections for middle latitude, Adv. Space Res. 46(8). 1039-1046. 2010.
10. Drob D.P., Emmert T., Crowley G., Picone J.M., et al. An empirical model of the Earth's horizontal wind fields: HWM07, J. Geophys. Res. 113. A12304. doi:10.1029/2008JA013668. 2008.
11. Galkin I.A., ReinischB.W., HuangX., BilitzaD. Assimilation of GIRO data into a real-time IRI, Radio Sci. 47. RS0L07. doi:10.1029/2011RS004952. 2012.
12. Feshchenko E.Yu., Maltsev Yu.P. Relations of the polar cap voltage to the geophysical activity, In: Proc. XXVI Annual Seminar “Physics of Auroral Phenomena”, February 25–28, 2003, PGI KSC RAS, Apatity, Russia, 59–61. 2003.
13. Iijima T., Potemra T.A. The amplitude distribution of field-aligned currents of northern high latitudes observed by Triad, J. Geophys. Res. 81(13). 2165–2174. 1976.
14. Hardy D.A., Gussenhoven M.S., Raistrick R., McNeil W.J. Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res. 92(A11). 12275–12294. doi:10.1029/JA092iA11p12275. 275. 1987.
15. Hedin A.E., Biondi M.A., Burnsidet R.G., et al. Revised global model of thermospheric winds using satellite and ground based observations, J. Geophys. Res. 96. 7657–7688. doi:10.1029/91JA00251. 1991.
16. Heppner J.P., Maynard N.C. Empirical high-latitude electric field model, J. Geophys. Res. 92(A5). 4467–4489. 1987.
17. Klimenko M.V., Zakharenkova I.E., Klimenko V.V., Lukianova R.Y., Cherniak I.V. Simulation and observations of the polar tongue of ionization at different heights during the 2015 St. Patrick's Day storm, Space Weather. 17. doi:10.1029/2018SW002143. 2019.
18. Knudsen W.C., Banks P.M., Winningham J.D., Klumpar D.M. Numerical model of the convecting F2 ionosphere at high latitudes, J. Geophys. Res. 82(29). 4784-4792. 1977.
19. Lukianova R. Y., Christiansen F. Modeling of the global distribution of ionospheric electric field based on realistic maps of field‐aligned currents, J. Geophys. Res. 111 A03213. doi:10.1029/2005JA011465. 2006.
20. Lukianova R., Uvarov V.M. Coisson P. High-latitude F region large-scale ionospheric irregularities under different solar wind and zenith angle conditions, Adv. Space Res. 59(2). 557–570. doi:10.1016/j.asr.2016.10.010. 2017.
21. Mansilla G.A., Mosert M., Araujo J. Validation of the STORM model in IRI-2001 at a high latitude station, Adv. Space Res. 44(6). 742-746. doi:10.1016/j.asr.2009.04.033. 2009.
22. Mikhailov A.V., Perrone L. A method for foF2 short-term (1–24 h) forecast using both historical and real-time foF2 observations over European stations: EUROMAP model, Radio Sci. 49. doi:10.1002/2014RS005373. 2014.
23. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., et al. Numerical modelling of the thermosphere-ionosphere-protonosphere system, J. Atmos. Terr. Phys. 53. 1113–1124. 1991.
24. Namgaladze A. A., Koren'kov Y.N., Klimenko V.V., Karpov I.V., Bessarab F.S., Surotkin V.A., et al. Global model of the thermosphere‐ionosphere‐protonosphere system, Pure Appl.Geophys.127(2/3). 219–254. doi:10.1007/BF00879812. 1988.
25. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res. 107(A12). 1468. doi:10.1029/2002JA009430. 2002.
26. Reid B., Themens D.R., McCaffrey A., Jayachandran P.T., Johnsen M.G., Ulich T. A-CHAIM: Near-real-time data assimilation of the high latitude ionosphere with a particle filter, Space Weather, 21, e2022SW003185, doi:10.1029/2022SW003185. 2023.
27. Richmond A.D., Kamide Y. Mapping electrodynamic features of the high-latitude ionosphere from localized observations. Technique, J. Geophys. Res. 93. 5741-5759. doi:10.1029/JA09iA06p05741. 1988.
28. Schunk R.W. A mathematical model of the middle and high latitude ionosphere, Pure Appl. Geophys. 127(2/3). 255-303. doi:10.1007/BF00879813. 1988.
29. Sojka J.J. Global scale, physical models of the F region ionosphere, Rev. Geophys. 27 (3). 371–403. doi:10.1029/RG027i003p00371. 1989.
30. Sojka J.J., Schunk R.W. Simulations of high latitude ionospheric climatology, J. Atmos. Sol. Terr. Phys. 59 (2). 207–229. 1997.
31. Themens D.R., Jayachandran P.T., Nicolls M.J., MacDougall J.W. A top to bottom evaluation of IRI 2007 within the polar cap, J. Geophys. Res. Space Physics. 119. 6689– 6703. doi:10.1002/2014JA020052. 2014.
32. Themens D.R., Jayachandran P.T., Galkin I., Hall C. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): NmF2 and hmF2, J. Geophys. Res. Space Physics. 122. 9015–9031. doi:10.1002/2017JA024398. 2017.
33. Themens D.R., Jayachandran P.T., Reid B., McCaffrey A.M. The limits of empirical electron density modeling: Examining the capacity ofE‐CHAIM and the IRI for modeling intermediate (1‐to 30‐day) timescales at high latitudes, Radio Sci. 54. doi:10.1029/2018RS006763. 2020.
34. Uvarov V.M., Lukianova R.Yu. Numerical modeling of the polar F region ionosphere taking into account the solar wind conditions, Adv. Space Res. 56. 2563–2574. doi:10.1016/j.asr.2015.10.004. 2015.
35. Vorobjev V.G., Yagodkina O.I. Auroral precipitation dynamics during strong magnetic storms, Geomagnetism Aeronomy. 47(2). 185–192. doi:10.1134/S0016793207020065. 2007.
36. Watson C., Themens D.R., Jayachandran P.T. Development and validation of precipitation enhanced densities for the Empirical Canadian High Arctic Ionospheric Model, Space Weather. 19. e2021SW002779. doi:10.1029/2021SW002779. 2021.
37. Weimer D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res. 110, A05306. doi:10.1029/2004JA010884. 2005.
38. Zhang Y., Paxton L.J. An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol.-Terr. Phys. 70(8/9). 1231-1242. doi:10.1016/j.jastp.2008.03.008. 2008.