Используемая литература
1. Adamchuk V. I., Allred B., Doolittle J., Grote K., Viscarra Rossel R. A. Tools for proximal soil sensing. 2017.
2. Ahmad J. A., Forman B. A., Kumar S. V. SMAP soil moisture assimilated Noah-MP model output// DRUM. 2021.
3. Arsenault K. R., Kumar S. V., Geiger J. V., Wang S., Kemp E., Mocko D. M. Beaudoing H. K., Getirana A., Navari M., Li B., Jacob J., Weigel J. Peters-Lidard C. D. The land surface data toolkit (LTD v7.2) – a data fusion environment for land data assimilation systems// Geosci. Model Dev. 11, 2018. Pp. 3605-3621.
4. Ding R., Jin H., Xiang D., Wang X., Zhang Y., Shen D., Su L., Hao W., Tao M., Wang X., Zhou C. Soil moisture sensing with UAV-mounted IR-UWB radar and deep learning//Proceedings of the ACM on interactive. 2023.
5. Dirgahayu D. The use of optical and radar data to predict soil moisture (case study on sugarcane plantation)// Project of planning and improvement. Lapan, Jakarta. 1997.
6. Domiri D. D. Development of land moisture estimation model using modis infrared, thermal, and evi to detect drought at paddy field// International journal of remote sensing and earth sciences. Vol. 10. No 1. June 2013. Pp. 47-54.
7. Gelaro R., McCArty W., Suarez M. J., Todling R., Molod A., Takacs L., Randles C. A. Darmenov A., Bosilovich M. G., Reichle R., Wargan K. The modern-era retrospective analysis for research and applications// Version 2. J. Climate. 30. 5419-5454. 2017.
8. Goddard Space Flight Center: FluxSAT gross primary production, aura validation data center NASA// 2010.
9. Hauser M., Orth R., Senevirante S. I. Investigation soil moisture-climate interactions with prescribed soil moisture experiments: an assessment with the community earth system model// Geosci. Model Dev. 10. 1665- 1677. 2017.
10. Ismatova K. R., Badalova A. N., Ismailov A. I., Aliyev Z. H., Talibova S. S. Using aerospace methods in soil research// Archives biomedical engineering & Biotechnology. 2019. Doi:10.33552/ABEB.2019.02.000545.
11. Jalilvand E., Tajrishy M., Hashemi S. A. G. Z., Brocca L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region// Remote Sens. Environ. 231. 111226. https://doi.org/10.3398/feart.2019.00235. 2019.
12. Kumar S. V., Holmes T. R., Blindlish R., Peters-Lidard C. Assimilation of vegetation optical depth retrievals from passive microwave radiometry// Hydrol. Earth Syst. Sci. 24. 3431-3450. 2020.
13. Kwon Y., Forman B. A., Ahmad J. A., Kumar S. V., Yoon Y. Exploring the utility of machine learning-based passive microwave brightness temperature data assimilation over terrestrial snow in high mountain Asia// Remote Sensing. 11. 2265. 2019.
14. Lu F., Sun Y., Hou F. Using UAV visible images to estimate the soil moisture of steppe// Water 2020. 12. 2334.
15. Negahbani, S., Momeni, M. & Moradizadeh, M. Improving the Spatiotemporal Resolution of Soil Moisture through a Synergistic Combination of MODIS and LANDSAT8 Data. Water Resour Manage 36, 1813–1832 (2022). https://doi.org/10.1007/s11269-022-03108-1.
16. O’Neill P. E., Chan S., Njoku E. G., Jackson T., Bindlish R., Chaubell J. SMAP L3 radiometer global daily 36 km EASE-Grid Soil moisture// Version 8. NSIDC. 2019.
17. Takeuci W., Yasuoka Y. Development of normalized vegetation, soil and indices derived from satellite remote sensing data// Proceeding of 25th ACRS. 2004. Pp. 859-864.
18. Wang X. Relation between ground-based soil moisture and satellite image based NDVI// Earth and environmental science department. University of Texas at San Antonio. 2005.