

УДК 523.985

Поступила в редакцию 27.06.2023 г. Опубликована 27.09.2023 г.

ПРОГНОЗ ОПАСНЫХ ДЛЯ АЭРОНАВИГАЦИИ СОЛНЕЧНЫХ ПРОТОННЫХ СОБЫТИЙ ПО ДАННЫМ НАБЛЮДЕНИЯ РЕНТГЕНОВСКИХ ВСПЫШЕК СОЛНЦА И КОРОНАЛЬНЫХ ВЫБРОСОВ МАСС

В. А. Буров¹, Ю. П. Очелков¹

¹Институт прикладной геофизики им. акад. Е.К. Федорова, г. Москва, Россия

В работе рассматриваются возможности прогнозирования солнечных протонных событий опасных для аэронавигации по параметрам солнечных событий: корональных выбросов масс и рентгеновских вспышек Солнца. Показывается, что наиболее эффективным является прогноз по КВМ типа Halo и Partial Halo со скоростью большей или равной 900 км/с, которым соответствуют вспышки рентгеновского излучения классов больше или равных M5.

КЛЮЧЕВЫЕ СЛОВА: ПРОГНОЗ СОЛНЕЧНЫХ ПРОТОННЫХ СОБЫТИЙ, РЕНТГЕНОВСКИЕ ВСПЫШКИ, КОРОНАЛЬНЫЕ ВЫБРОСЫ МАСС

DOI 10.5425/2304-7380_2023_39_38

https://elibrary.ru/rdhxkz

1. ВВЕДЕНИЕ

В настоящее время прогноз солнечных протонных событий (СПС) по наблюдениям явлений на Солнце осуществляется в основном по наблюдению рентгеновских вспышек Солнца в мягком диапазоне длин волн, хотя физически СПС теснее связаны с всплесками жесткого рентгеновского излучения [1, 2]. Дело в том, что данные о мягком рентгеновском излучении доступны в реальном времени с различных КА (данные с КА GOES обновляются каждую минуту), что нельзя сказать об оперативных данных по жесткому рентгеновскому излучению. Согласно Нойперту [3] производная от временного хода мягкого рентгеновского излучения во вспышках пропорциональна потоку жесткого рентгеновского излучения. Таким образом, максимальный поток мягкого рентгеновского излучения пропорционален интегральному потоку жесткого рентгеновского излучения за все событие. Поэтому основным параметром в методах прогноза является максимальный поток мягкого рентгеновского излучения. Другим важным параметром является длительность фазы роста мягкого рентгеновского излучения [2]. Тем не менее, эффективность прогноза по рентгеновскому излучению вспышек не высока. Так для детерминированного прогноза СПС балла > S1 (>1част/см²с ср, для энергий протонов больше 10 МэВ) в [2] получены значения FAR и POD – 56 % и 45 %, соответственно, а в [1] – 63 % и 42 %, (в этой работе используется также наличие радиовсплесков II типа). Представляется

Адрес редакции журнала «Гелиогеофизические исследования»:

ФГБУ «ИПГ» 129128; Россия, Москва ул. Ростокинская, 9. e-mail: vestnik@ipg.geospace.ru

https://elibrary.ru/rdhxkz

Электронная почта автора для переписки:

Очелков Юрий Павлович, e-mail: yur_och@mail.ru

маловероятным, что использование каких-либо других параметров рентгеновского излучения существенно улучшит прогноз.

Прогноз СПС по электромагнитному излучению солнечных вспышек базируется на предположении о том, что солнечные протоны ускоряются во вспышках. Такая точка зрения в настоящее время не является общепринятой. В целом ряде работ [4, 5] рассматривается другая возможность: ускорение протонов корональными выбросами масс (КВМ). Существуют и другие точки зрения, например, что в части событий ускорение происходит в КВМ, а в части – во вспышках. В [6] было показано, что существуют события, в которых протоны заведомо ускоряются в КВМ. Возможно, что вспышки не ускоряют протоны, а только способствуют выходу ускоренных в КВМ протонов в область свободного распространения. Во всяком случае, ясно, что КВМ играют важную роль в ускорении и распространения протонов СПС. В настоящее время, есть возможность оперативного получения данных о КВМ, благодаря программе Cactus [7], что дает возможность использовать данные по КВМ в методах прогноза. Необходимо заметить, однако, что обновление сайта Cactus происходит каждые 6 часов, в то время как среднее время достижения максимума в протонном событии составляет около 5 часов (для Ep > 50 МэВ), и для некоторых событий прогноз будет не актуален. Но для большого количества случаев такой прогноз имеет практическое значение.

2. СОЛНЕЧНЫЕ ПРОТОННЫЕ СОБЫТИЯ, ПРЕДСТАВЛЯЮЩИЕ ОПАСНОСТЬ ДЛЯ АЭРОНАВИГАЦИИ

Рассмотрим вопрос о том, какие СПС представляют опасность для авиации. По требованиям ИКАО сообщения об умеренном возмущении радиационной обстановки на высотах полета авиации (МОD) инициализируются, если порог в 30 мк3в/час ($8.3 \cdot 10^{-3}$ мк3в/с) достигается на каком-либо уровне полета между FL250 и FL460 (8–14 км). Определим, какой интенсивности в максимуме протонного события для энергии протонов больше 100 МэВ, соответствует такая мощность дозы. Наименьший поток протонов будет наблюдаться, если этот порог достигается на уровне FL460 (14 км) в полярных районах, где жесткости обрезания равны 0.05–0.25. Высоте 14 км соответствует минимальная толщина остаточной атмосферы 125 г/см². Используя результаты [8], найдем ,что такой мощности дозы в $8.3 \cdot 10^{-3}$ мк3в/с соответствует поток протонов с энергией больше 90 МэВ равный 21.3 част/см²с (для спектра протонов с интегральным показателем спектра $\gamma = 3$). Перейдя к интенсивности потока протонов с энергией больше 100 МэВ найдем для $\gamma = 3$ значение равное 2.4 част/см²с ср (для $\gamma = 2$ оценки интенсивности потока протонов с энергией больше 100 МэВ дают меньшее значение в 0.4 част/см²с ср). Для другого порога (когда возмущение радиационной обстановки считается сильным) в 80 мк3в/час (при максимальной высоте равной 18 км) расчеты дают значение примерно равное 1 част/см²с ср.

Таким образом, будем считать, что опасность для аэронавигации могут представлять протонные события с энергией протонов больше чем 100 МэВ, интенсивность в максимуме которых (Jp(>100)) превышает примерно 1част/см²с·ср (эта величина потока протонов представляется как минимально возможная).

Для увеличения статистической обеспеченности мы рассмотрим необходимые и достаточные условия для возникновения потоков протонов на орбите Земли с энергией больше 50 МэВ и интенсивностью в максимуме события (Jp(> 50)), превышающей 1 част/см²с·ср.

Рассмотрим, как связаны между собой значения Jp(> 50) и Jp(> 100). На рисунке 1 представлена зависимость этих величин для 23 цикла солнечной активности (CA) по данным KA GOES [9].

Из рисунка следует, что зависимость хорошо описывается линейной функцией (1). Тонкая сплошная линия – линейная регрессия:

$$LgJp(>100) = 1.00 \cdot LgJp(>50) - 0.72 \tag{1}$$

Толстая красная линия на рисунке - уровень интенсивности потока протонов с энергией больше 100 МэВ, выше которого может существовать опасность для аэронавигации. Из рисунка следует, что при интенсивности 50-МэВных протонов больше, чем 5 част/см²с·ср, в 95 % случаев интенсивность 100-МэВных протонов превышает этот уровень.

Рис. 1. Зависимость интенсивности потоков протонов в СПС с энергией большей, чем 100 МэВ от интенсивности потоков протонов с энергией большей, чем 50 МэВ для 23 цикла СА

Рассмотрим аналогичную зависимость для 24 цикла СА. Она представлена на рис. 2. Тонкая прямая линия – линия линейной регрессии:

$$LgJp(>100) = 0.94 \cdot LgJp(>50) - 0.60 \tag{2}$$

Из рисунка следует, что при интенсивности потоков протонов 50 МэВ больше, чем 5 част/см²с·ср, в 93 % случаев интенсивность потоков 100-МэВных протонов превышает уровень опасной для аэронавигации.

Рис. 2. Зависимость интенсивности потока протонов в СПС с энергией большей, чем 100 МэВ от интенсивности потока протонов с энергией большей, чем 50 МэВ для 24 цикла СА

Таким образом, по данным двух циклов СПС с энергией протонов большей, чем 50 МэВ и интенсивностью в максимуме события большей, чем 5 част/см²с·ср, в подавляющем большинстве случаев (93-95 %) могут представлять опасность для аэронавигации.

Рассмотрим далее необходимые условия для наблюдения на орбите Земли СПС с энергиями протонов большими 50 МэВ и с интенсивностью в максимуме большими, чем 1 част/см²с·ср, которые мы будем обозначать как СПС₅₀.

[©] Институт прикладной геофизики имени академика Е. К. Федорова

3. НЕОБХОДИМЫЕ УСЛОВИЯ ДЛЯ НАБЛЮДЕНИЯ В ОКП СПС₅₀ ПО ДАННЫМ 23 И 24 ЦИКЛОВ СА

Для нахождения необходимых условий для наблюдения в околоземном пространстве (ОКП) СПС₅₀ мы составили таблицу (см. таблицу 1), в которую включили данные по всем событиям СПС 23 цикла СА с энергией протонов больше 50 МэВ и интенсивностью в максимуме больше 1част/см²сср. В таблице 1 в первом столбце – год события, во втором столбце – месяц и день события, в третьем – интенсивность в максимуме для энергии протонов больше 50 МэВ в част/см²сср, в четвертом – интенсивность потока протонов в максимуме того же события с энергией >100 МэВ в част/см²сср, в пятом – координаты рентгеновской вспышки (0.1-0.8 нм), в шестом – дата рентгеновской вспышки и время максимума (UT), в седьмом – класс рентгеновской вспышки, в восьмом – дата КВМ и время первого наблюдения (коронограф C2 Lasco), в девятом – скорость коронального выброса в картинной плоскости. Использованы данные по протонам с КА GOES [9], данные по рентгеновским вспышкам из каталога [10], данные по корональным выбросам масс с сайта каталога SOHO LASCO [11].

Год	Дата СПС	Jp>50 MeV	Jp >100 MeV	SX коорд.	SX Дата Tsx, max	SX класс	CMEдата Tobs	CME V _{KM} / c	СМЕ Df град.
1	2	3	4	5	6	7	8	9	10
1997	11.04	10	2.2	S14W34	4 05:58	X2.1	04 06:10	785	360
1997	11.06	100	50	S18W63	6 11:55	X9.4	06 12:10	1556	360
1998	04.20	50	2.2	S20w90	20 10:21	M1.4 Wlmb	20 10:07	1863	165
1998	05.02	28	7	S15W15	02 13:42	X1.1	02 14:06	938	360
1998	05.06	10	3	S15W64	6 08:09	X2.7	06 08:29	1099	190
1998	08.24	10	3.5	N35E09	24 22:12	X1.0	gap	0	
1998	09.30	30	2.9	N23W78	30 13:50	M2.8	gap	0	
1998	11.14	28	6	N28W90	14 05:08	C1.3 2d Wlimb	gap	0	
1999	06.01	2	0.5	n25w90 back.side	01 19:04	C1.2	01 19:37	1772	360
2000	02.18	1	0.3	S29E07	17 20:45	M1.3	17 21:30	728	360
2000	06.10	6	1.7	N22W39	10 17:02	M5.2	10 17:08	1108	360
2000	07.13	1300	260	N16W64	12 18:41	M5.7	12 20:30	820	101
2000	07.22	1.2	0.35	N14W56	22 11:34	M3.7	22 11:54	1230	229
2000	09.12	1.8	0.3	S19W08	12 12:00	M1.0	12 11:54	1550	360
2000	10.16	1.2	0.28	n05w90	16 07:28	M2.5	16 07:27	1336	360
2000	11.08	2000	300	N20W66	08 23:28	M7.4	08 23:06	1738	170
2000	11.24	4.5	1	N20W05	24 05:02	X2.0	24 05:30	1298	360
2000	11.26	17	1	N07E50	26 01:31	M8.2	26 01:31	2519	360
2001	01.28	2	0.23	S04W59	28 16:40	M1.5	28 15:54	916	360
2001	03.29	1	0.15	N16W12	29 10:26	X1.7	29 10:26	942	360
2001	04.02	30	4	n19w90*	02 21:51	X>17.5	02 22:06	2505	244
2001	04.09	1	0.4	S21W04	09 15:34	M7.9	09 15:54	1192	360
2001	04.10	3	0.3	S23W09	10 05:26	M2.3	10 05:30	2411	360
2001	04.12	2	1	S20W42	12 10:28	X2.0	12 10:31	1184	360

Таблица 1. Параметры событий 23 цикла, которым соответствовали СПС 50

продолж	сение таоли	цы I 2	4	5	6	7	0	0	10
1	2	3 200	4	2 200004	0	/	8	9	10
2001	04.13	300	130	s20w84	13 13:30	Λ 14.4	13 14:00	2465	360
2001	05.20	1	0.6	s18w90*	20 06:03	C2.2 M6.4	20.06:26	546	179
2001	06.15	1	0.8	back side	20 00.05	1010.1	15 15:56	1701	360
2001	08.16	8	2.5	back side			15 23:54	1575	360
2001	09.24	100	15	\$17E26	24 10.38	X2.6	24 10:31	2402	360
2001	10.01	10	3	s18w80*	01 05.15	M9 1	01 05:30	1405	360
2001	10.22	2	0.8	S18E16	22 17:59	X1 2	22 18:26	618	106
2001	11.04	200	60	N07W19	04 16.20	X1.0	04 16.35	1810	360
2001	11.01	100	5	S13W38	22 23.30	M9.9	22 23.30	1437	360
2001	12.26	100	40	N08W54	22 23.30 26 05.40	M7 1	22 23.30 26 05·30	1446	212
2002	04.21	200	20	S14W84	21 01.51	X1.5	21 01.27	2393	360
2002	08.22	55	23	S07W62	21 01.51 22 01.57	M5.4	22 02:06	998	360
2002	08.24	70	2.3	S02W81	24 00.49	X3.1	22 02.00 24 01.27	1913	360
2002	11.09	1	0.1	S04W29	09 13:23	M4.6	09 13:32	1838	360
2003	05.31	2.8	0.8	S07W65	31 02:24	M9	31 02:30	1835	360
2003	10.26	10	0.8	N02W38	26 18:19	X1.2	26 17:54	1754	171
2003	10.28	1000	140	S16E08	28 11:10	X17.2	28 11:30	2459	360
2003	10.29	360	100	S15W02	29 20:49	X10.0	29 20:54	2459	350
2003	11.02	220	40	S14W56	02 17:25	X8.3	02 17:30	2598	360
2003	11.04	12	1	S19W83	04 19:50	X>17	04 19:54	2657	360
2004	07.25	2	0.1	N08W33	25 15:14	M1.1	25 14:54	1333	360
2004	09.19	2	0.3	n03w60*	19 17:12	M1.9	gap	0	
2004	11.01	8	1.3	N15W41	01 03:22	M1.1	01 03:54	459	192
2004	11.07	4	0.5	n10w15*	07 16:06	X2.0	07 16:54	1759	360
2004	11.10	10	2.5	N07W51	09 17:19	M8.9	09 17:26	2000	360
2005	01.16	10	0.6	N14W08	15 23:02	X2.6	15 23:06	2861	360
2005	01.17	300	23	N14W24	17 09:52	X3.8	17 09:54	2547	360
2005	01.20	1000	700	N12W58	20 07:01	X7.1	20 06:54	882	360
2005	06.16	9	2.7	N09W87	16 20:02	M4.0	gap		
2005	07.14	2	0.1	N11W90	14 11:0?	X1	14 10:54	2115	360
2005	08.22	4.5	0.25	S13W65	08 17:27	M5.6	22 17:30	2378	360
2005	09.07	18	5	S11E89	07 17:17	X17	gap		
2005	09.13	1	0.1	S09E10	13 19:27	X1.5	13 20:00	1866	360
2006	06.12	100	18	S06E63	06 18:47	X6.5	06 20:12	XXXX	360
2006	13.12	230	80	S06W23	13 02:40	X3.4	13 02:54	^ 1774	360
2006	14.12	12	2	S06W46	14 22:15	X1.5	14 22:30	1042	360

42

Всего в 23 цикле наблюдалось 61 событие СПС₅₀. Из них 49 - от вспышек на западной половине диска, 9 – от вспышек из гелиодолготного интервала [30-0⁰) Е и 3 из гелиодолготного интервала [90-30⁰) Е. Корональные выбросы с углом раствора 360° это КВМ типа Halo, с углом раствора большим или равным 120° – КВМ типа Partial Halo. Из 55 наблюдаемых КВМ, 54 – типа Halo или Partial Halo. Только в 4-ех событиях из 55 скорость КВМ меньше 900 км/с.

Таким образом, по данным событий 23 цикла необходимым условием для наблюдения в ОКП СПС₅₀ является наблюдение соответствующего КВМ типа Halo или Partial Halo со скоростью ≥ 900км /с. Это 93 % критерий.

Всего в 24 цикле наблюдалось 27 событий СПС₅₀. Из них 18 событий от вспышек на западной половине диска, 4 от вспышек из гелиодолготного интервала [30-0⁰)Е и 1 из гелиодолготного интервала [90-30⁰)Е (для 4 привязка отсутствует). Из 27 наблюдаемых КВМ – 27 типа Halo или Partial Halo. Только в 3-ех событиях из 27 скорость КВМ меньше 900 км/с.

По данным событий 24 цикла необходимым условием для наблюдения в ОКП СПС₅₀ также является наблюдение соответствующего КВМ типа Halo или Partial Halo со скоростью ≥ 900км /с. Это 90% критерий.

Таким образом, по данным двух циклов для подавляющего большинства событий СПС₅₀ (91 %) наблюдались соответствующие этим событиям КВМ типа Halo или Partial Halo со скоростью ≥ 900км/с. Однако далеко не все КВМ такого типа сопровождаются СПС₅₀.

4. ДОСТАТОЧНЫЕ УСЛОВИЯ ДЛЯ НАБЛЮДЕНИЯ НА ОРБИТЕ ЗЕМЛИ СПС50

Рассмотрим теперь вопрос о том, в каком случае КВМ типа Halo или Partial Halo со скоростью ≥ 900 км/с сопровождаются событиями СПС₅₀.

Для этого рассмотрим все случаи наблюдения КВМ такого типа в 23 и 24 циклах. В 23 и 24 циклах. В 23 и 24 циклах произошло несколько сотен событий с КВМ такого вида и только несколько десятков СПС₅₀. Вероятность наблюдения СПС₅₀ при этом равна 10-15 %. Прогноз СПС₅₀, основанный только на наблюдениях КВМ, будет иметь достаточно низкую оправдываемость. Как показало дальнейшее исследование, для улучшения качества прогноза существенным является учет параметров мягких рентгеновских всплесков.

В таблице 1А (Приложение А) приведены данные по всем КВМ типа Halo или Partial Halo со скоростью ≥ 900 км/с и соответствующим им рентгеновским вспышкам и протонным событиям для 23 цикла. Данные для 24 цикла не приводятся из соображений ограничения объема статьи.

В таблице 1А в первом столбце приведена дата КВМ, во втором – время первого наблюдения КВМ, в третьем – угол раствора КВМ, в четвертом – скорость КВМ, в пятом – класс и координаты рентгеновской вспышки, в шестом - максимальная интенсивность потока протонов с энергией > 50 МэВ в СПС в част/см²с·ср (буква f – означает фоновое значение).

По данным, содержащимся в таблице 1А, может быть составлена схема, на которой отображены взаимосвязь СПС₅₀ и частота их наблюдения.

Рассмотрим схему для 23 цикла СА (см. рисунок 3).

Оценим вероятности различных событий по этой схеме. В 23 цикле наблюдалось 358 событий КВМ типа Halo или Partial Halo со скоростью ≥ 900 км/с и 53 СПС₅₀ после них. То-есть, вероятность СПС₅₀ после КВМ такого типа равна 15 %. Вероятность рентгеновской вспышки класса > M1 после КВМ такого типа равна 58 %. Вероятность СПС₅₀ после рентгеновских вспышек классов > M1, происшедших после КВМ данного типа равна 25 %. Вероятность вероятность велышек класса < M1 равна 42 %. Вероятность СПС₅₀ после таких вспышек равна 0%. Чтобы повысить вероятность наблюдения СПС следует рассмотреть отдельно 3 сектора гелиодолгот [90-30°E), [30-0°E) и [0-90°W) [13]. Вероятность СПС₅₀ после вспышки класса > M1 в первом секторе гелиодолгот равна 0, после вспышки класса > M1 во втором секторе гелиодолгот равна 17 %, после вспышки класса > M1 в третьем секторе гелиодолгот равно 49 %. Существенно повышает вероятность СПС₅₀ учет наличия вспышек более высокого класса, например, \geq M5. Так вероятность СПС₅₀ после вспышек классов < M5 и > M1 равна 17 %. Вероятность СПС₅₀ после всихоре равна 69 %, а вероятность СПС₅₀ после всихора

Аналогичная схема для 24 цикла СА представлена на рис. 4.

Рис. 3. Схема взаимосвязи и частоты событий для 23 цикла СА. Числа после двоеточия – количество событий

Оценим вероятности различных событий по этой схеме. В 24 цикле наблюдалось 211 событий KBM типа Halo или Partial Halo со скоростью ≥ 900 км/с и 24 СПС₅₀ после них. То-есть, вероятность СПС₅₀ после KBM такого типа равна 11 %. Вероятность рентгеновской вспышки класса > M1 после KBM такого типа равна 36 %. Вероятность СПС₅₀ после рентгеновской вспышки класса > M1, происшедших после KBM данного типа равна 26 %. Вероятность вспышек класса < M1 равна 64 %. Вероятность СПС₅₀ после таких вспышек равна 3 %. Чтобы повысить вероятность СПС следует также рассмотреть отдельно 3 сектора гелиодолгот [90-30^oE), [30-0^oE) и [0-90^oW). Вероятность СПС₅₀ после вспышки класса > M1 во втором секторе гелиодолгот равна 20 %, после вспышки класса > M1 в третьем секторе гелиодолгот равна 49 %. Существенно повышает вероятность СПС₅₀ после вспышек классов ≥ M5 в третьем секторе равна 67 %, а вероятность СПС₅₀ после вспышек класса > M1 во втором секторе семое < M5 и > M1 равна 21 %. Вероятность ПОС₅₀ после вспышек классов > M5 и > M1 равна 21 %.

Можно видеть, что вероятности различных событий в 23 и 24 циклах близки друг к другу. Существенным фактором для обоих циклов является значительное повышение вероятности СПС₅₀ при учете наличия вспышек более высокого класса, например, ≥ M5.

5. ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДА

Проведем оценку эффективности детерминированного прогноза протонных событий с энергией протонов ≥ 50 МэВ и интенсивностью в максимуме больше или равной, чем 1 част/см² сср.

Рассмотрим сначала прогноз от наиболее геоэффективных вспышек [13] от западной половины диска Солнца для 23 цикла. При прогнозе после наблюдения КВМ типа Halo и Partial Halo со скоростью ≥ 900 км/с (необходимое условие для прогноза) прогноз считается положительным при наличии рентгеновской вспышки ≥ М5 и отрицательным при отсутствии такой вспышки (см. рис. 3). Используя схему рис. 3, составим таблицу сопряженности для детерминированного прогноза (см. табл. 2).

Таблица 2. Таблица сопряженности детерминированного прогноза для вспышек из сектора 3 для 23 цикла СА

Наблюдение	Событие было	События не было
Прогноз		
Прогноз положительный	N11 = 42	N12 = 19
Прогноз отрицательный	N21 = 6	N22 = 30

Из этой таблицы найдем значения POD (probability of detecting) и FAR (false alarm ratio):

POD = N11 / (N11 + N21) = 42 / 48 = 87.5 % FAR = N12 / (N11 + N12) = 19 / 61 = 31 %

Рассмотрим эффективность прогноза от вспышек западной половины диска Солнца для 24 цикла. Используя данные рис. 4 составим таблицу сопряженности для детерминированного прогноза (см. табл. 3)

Таблица 3. Таблица сопряженности детерминированного прогноза для вспышек из сектора 3 для 24 цикла СА

Наблюдение	Событие было	События не было
Прогноз		
Прогноз положительный	N11 = 14	N12 = 7
Прогноз отрицательный	N21 = 3	N22 = 11

Из этой таблицы найдем значения POD и FAR для событий 24 цикла:

POD = N11 / (N11 + N21) = 14 / 17=82 % FAR = N12 / (N11 + N12) = 7 / 21 = 33 %

Эти значения близки к значениям для 23 цикла.

Учитывая, что вероятности различных событий, как было показано в предыдущем разделе, приблизительно равны друг другу для разных циклов, для увеличения статистической значимости результата можно объединить события двух циклов и определить POD и FAR для 23 и 24 циклов. Получим значения: POD = 86 %, FAR = 33 %.

Проведем теперь оценку эффективности детерминированного прогноза протонных событий с энергией протонов ≥ 50 МэВ и интенсивностью в максимуме больше или равной, чем 1 част/см²сср, для сектора 2 (0⁰-30⁰E]. При прогнозе после наблюдения КВМ типа Halo и Partial Halo со скоростью ≥ 900 км/с (необходимое условие для прогноза) прогноз считается положительным при наличии рентгеновской вспышки $\geq X1$ и отрицательным при отсутствии такой вспышки (см. рисунки 3 и 4). Приведем результаты сразу для двух циклов. Таблица сопряженности для детерминированного прогноза приведена в табл. 4.

							<u> </u>
		CONNECTION	ποτοηγιμιμ	nopalitioro	THATIAN		III COUTODO /
Taunnia 4 .	гаолина			пованного	ппол поза		$M_{2} \cup U_{1} \cup U_{1} \cup U_{2} \cup U_{2$
1.0000000000000000000000000000000000000	1	•••••••••••••	A	p o Dunnor o		A.m. 20110111101	no concopa _
		<u> </u>	-	<u> </u>	-		-

Наблюдение	Событие было	События не было
Прогноз		
Прогноз положительный	N11 = 5	N12 = 3
Прогноз отрицательный	N21 = 1	N22 = 25

Из этой таблицы найдем значения POD и FAR:

POD = N11 / (N11 + N21) = 5 / 6 = 83 % FAR = N12 / (N11 + N12) = 3 / 8 = 37.5%

Результаты близки к результатам для прогноза СПС₅₀ от западных вспышек.

6. ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В работе на основе данных за 23 и 24 циклы СА показано, что учет параметров КВМ, предшествующих событиям СПС, позволяет существенно улучшить прогноз СПС по рентгеновским вспышкам Солнца. СПС₅₀ практически всегда наблюдаются после корональных выбросов масс типа Halo и Partial Halo, которые имеют скорость равную или большую чем 900 км/с. Этот факт еще раз подтверждает важную роль КВМ в генерации и выходе солнечных протонов в межпланетное пространство. Однако прогноз СПС на основе только параметров КВМ не является достаточно эффективным. В 23 цикле СА наблюдалось 358 КВМ типа Halo и Partial Halo со скоростью ≥ 900 км/с. Часть КВМ наблюдалась от вспышек восточной половины диска, некоторые от вспышек на обратной стороне Солнца. От вспышек на западной половины диска наблюдалось не меньше, чем 97 КВМ (это значение получено по количеству привязанных вспышек класса > М1, см. рисунок 3). Поэтому вероятность наблюдения СПС₅₀ от КВМ западной половины диска меньше, чем 48 / 97 = 49 %. В то же время в 23 цикле наблюдались на западной половине диска 103 вспышки рентгеновского излучения класса \geq M5. Вероятность наблюдения СПС₅₀ от них равна 42 / 103 = 41 %. Из этих вспышек только 61 (около 60%) вспышка сопровождалась КВМ типа Halo и Partial Halo со скоростью ≥ 900 км/с. Вероятность наблюдения СПС₅₀ после таких вспышек равна примерно 70 %, что существенно выше, чем только после КВМ или только после рентгеновских вспышек. Поэтому наиболее оправдан совместный прогноз СПС₅₀ по параметрам КВМ и рентгеновского излучения вспышек. В работе предлагается прогноз СПС₅₀ по КВМ типа Halo и Partial Halo со скоростью ≥ 900 км/с и рентгеновским вспышкам Солнца классов ≥ M5 от западной половины диска и классов > X1 для вспышек из сектора гелиодолгот (0-30°E]. Показано, что для вспышек от западной половины диска эффективность детерминированного прогноза равна: POD = 86 %, FAR = 33 %, а от вспышек из сектора гелиодолгот $(0-30^{\circ}E]$ она равна: POD = 83 %, FAR = 37.5 %.

ЛИТЕРАТУРА

- 1. Laurenza M., Cliver E.W., Hewitt J., Storini M., Ling A. G., Balch C.C., Kaiser M. L. A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape". Space Weather, Vol. 7, S04008, doi:10.1029/2007SW000379, 2009.
- 2. Буров В.А., Очелков Ю.П. Наукастинг появления геоэффективных потоков протонов в околоземноми космическом пространстве // Федеральная служба по интеллектуальной собственности. Бюлл. № 17, 20.06.2013
- 3. Neupert W. M. Comparison of Solar X-Ray Line Emission with Microwave Emission during Flares // Astrophysical Journal, vol. 153, p.L59. 1968
- 4. Cane H.V., Lario D. An Introduction to CMEs and Energetic Particles //Space Sci. Rev. 2006. V.123. P.45-56.
- Trottet G., Samwel S., Klein K. L., et al. Statistical Evidence for Contributions of Flares and Coronal Mass Ejections to Major Solar Energetic Particle Events // Solar Physics, Springer Verlag. 2015. V.290 (3). P.819-839.
- 6. *Очелков Ю.П.* Определение момента инжекции протонов в солнечных протонных событиях по их временному ходу // Известия РАН, серия физическая, 2021, том 85, № 8, с. 1189-1193.
- 7. CACTUS http://www.sidc.oma.be/cactus/out/latestCMEs.html
- 8. Барсуков О.А., Коломеец Е.В. Радиационные аспекты исследования космического излучения в стратосфере. Москва. Энергоатомиздат, 1985, 121 с.
- 9. GOES 13-15 http://www.n3kl.org/sun/noaa_archive/, 2020
- 10. Catalog of Solar Flare Events with X-ray Class M1 X>17.5. XXIII cycle of Solar Activity (1996-2008). http://esdb.wdcb.ru/doi/2018/esdb-sad-fe-01.html
- 11. https://cdaw.gsfc.nasa.gov/CME_list/
- 12. Current Catalog of Solar Flare Events with X-ray Classes M1 X>17.5 XXIV Cycle of Solar Activity (I.2009 I0.2018), 2018. <u>http://www.wdcb.ru/stp/data/Solar Flare Events/Fl XXIV.pdf</u>
- 13. *Ochelkov Yu.P.* Longitudinal dependence of solar proton peak intensities using X-ray and proton data in the period of 22-23 cycles. Journal of Physics: Conference Series, Vol.409, Number 1, 2013, pp. 12183-12186.

FORECAST OF DANGEROUS FOR AIR NAVIGATION SOLAR PROTON EVENTS ACCORDING TO THE OBSERVATION DATA OF SOLAR X-RAY FLARES AND CORONAL MASS EJECTIONS

Burov V. A., Ochelkov Yu. P.

The paper considers the ability to predict of dangerous for air navigation solar proton events according to the parameters of solar events: coronal mass ejections (CME) and solar X-ray flares. It is shown that the most effective is the forecast according CME's Halo or Partial Halo types with a speed greater than or equal 900 km/c which correspond to X-ray flares classes greater than or equal to M5.

KEYWORDS: FORECAST OF SOLAR PROTON EVENTS, SOLAR X-RAY FLARES, CORONAL MASS EJECTIONS

Приложение А Таблица 1А

Дата КВМ	Время наблюд. КВМ	Df, град.	V, км/с	SX класс, координаты	Jp > 50 MeV
1	2	3	4	5	6
23.02.1997	2:30:05	209	905	C1	f
07.10.1997	13:30:05	167	1271	< B	f
06.11.1997	12:10:41	360	1556	X9.4 W63	100
29.03.1998	3:48:28	360	1397	XXX	f
31.03.1998	6:12:02	360	1992	XXX	f
20.04.1998	10:07:11	>243	1863	M1 2dWL	100
23.04.1998	5:55:22	360	1691	X1.2 s16e90	< 1
27.04.1998	8:56:06	360	1385	X1 S16E50	f
29.04.1998	16:58:54	360	1374	M7 S18 E20	f
02.05.1998	14:06:12	360	938	X1 S15W15	20
06.05.1998	8:29:13	190	1099	X2 S11W65	18
09.05.1998	3:35:58	178	2331	M7.7 s15w90	0.5
09.05.1998	20:04:56	129	1278	XXX	< 0.3
12.05.1998	8:55:20	225	1073	XXX	f
04.06.1998	2:04:45	360	1802	XXX	f
05.06.1998	7:02:43	132	1017	XXX	f
11.06.1998	10:28:38	177	1223	M1?	f
16.06.1998	18:27:05	281	1484	M1 s22w90	f
20.06.1998	18:20:37	360	964	XXX	f
05.11.1998	20:44:02	360	1118	M8.4 N22W18	8
24.11.1998	2:30:05	360	1798	X1 S23W81	0.3
26.11.1998	3:54:05	360	1505	XXXX	f
18.12.1998	18:09:47	360	1749	M8 N19E64	f
02.04.1999	8:30:05	>191	1068	M1 N15E78	f
03.04.1999	23:47:11	156	923	M4 N29E81	f
04.04.1999	5:30:05	>173	1203	M5 N18E72	f
24.04.1999	13:31:15	360	1495	XXXX	0.4
03.05.1999	6:06:05	360	1584	M5 N15E32	f
10.05.1999	5:50:0 5	360	920	M2 N16E19	f
27.05.1999	11:06:05	360	1691	xxx S30E78	0.5
01.06.1999	19:37:35	360	1772	XXX	2
04.06.1999	7:26:54	150	2230	M4 N17W69	0.8
11.06.1999	11:26:05	> 181	1569	<m1< td=""><td>f</td></m1<>	f
22.06.1999	18:54:05	360	1133	M1 N22E37	f

Продолжение таблицы 1А								
1	2	3	4	5	6			
23.06.1999	7:31:24	360	1006	M1 N23E42	f			
24.06.1999	13:31:24	360	975	XXXX	f			
28.06.1999	21:30:08	> 184	903	XXXX	f			
30.06.1999	4:30:05	> 153	1049	M2 S26E28	f			
25.07.1999	13:31:21	360	1389	M2 N38W81				
31.07.1999	11:26:05	268	1079	XXX	f			
01.08.1999	19:26:55	135	1159	XXX	f			
17.08.1999	15:30:05	> 206	962	XXX	f			
02.09.1999	15:30:08	170	1068	XXX	f			
10.09.1999	7:54:05	125	1467	XXX	f			
11.09.1999	21:54:05	120	1680	XXX	f			
16.09.1999	16:54:06	147	1021	XXX	f			
19.09.1999	17:18:05	139	1144	XXX	f			
21.09.1999	3:30:05	125	1402	XX	f			
14.10.1999	9:26:05	360	1250	M1 E32	f			
23.10.1999	1:26:51	143	1012	XXX	f			
24.10.1999	11:26:07	114	1127	XXX	f			
14.12.1999	15:54:05	145	1002	XXX	f			
20.12.1999	18:06:05	360	1237	XXX	f			
05.01.2000	1:54:06	127	1399	XXX	f			
28.01.2000	20:12:41	360	1177	XXX	f			
08.02.2000	9:30:05	360	1079	M1 N25E26	f			
09.02.2000	19:54:17	360	910	XXX	f			
10.02.2000	2:30:05	360	944	XXX	f			
12.02.2000	4:31:20	360	1107	M1.5 N26W23	0.8			
18.03.2000	23:54:05	> 204	1532	M3 N11W09	f			
29.03.2000	10:54:30	360	949	XXX	f			
04.04.2000	16:32:37	360	1188	C9N16W66	0.2			
23.04.2000	12:54:05	360	1187	XXX	0.2			
27.04.2000	14:30:05	138	1110	XXX	f			
04.05.2000	11:26:05	> 170	1404	M6.8 S20W90	f			
05.05.2000	15:50:05	360	1594	M1.5 S14W90	f			
07.05.2000	20:50:07	360	1781	XXX	f			
12.05.2000	23:26:05	360	2604	XXX	f			
15.05.2000	8:50:05	> 139	1549	M4 N21E75	f			
15.05.2000	16:26:05	> 165	1212	XXXX	f			
06.06.2000	15:54:05	360	1119	X1.5 N20E18	0.3			
09.06.2000	11:30:05	> 178	1024	xxx	f			
		1			1			

Продолжение таблицы 1А								
1	2	3	4	5	6			
10.06.2000	17:08:05	360	1108	M5.2 N22W38	5			
25.06.2000	7:54:13	165	1617	M1.5 N16W55	5			
28.06.2000	19:31:55	> 134	1198	XXX	f			
10.07.2000	21:50:06	> 289	1352	M5 N18E49	f			
11.07.2000	13:27:23	360	1078	M9 N18E27	f			
12.07.2000	11:06:05	144	1124	X2 N17E27	f			
14.07.2000	10:54:07	360	1674	X10 N22W07	1000			
22.07.2000	11:54:05	> 229	1230	M3.7N14W54	1.3			
27.07.2000	7:31:53	> 271	1287	XXX	f			
27.07.2000	19:54:06	360	905	XXX	0.3			
12.09.2000	11:54:05	360	1550	M1 S17W09	1.5			
12.09.2000	17:30:05	360	1053	XXXX	< 1			
16.09.2000	5:18:14	360	1215	M4 N14W07	< 0.15			
16.10.2000	7:27:21	360	1336	M2.5 n05w90	2			
22.10.2000	0:50:07	236	1024	XXX	f			
08.11.2000	23:06:05	> 170	1738	M8 N10W77	3000			
23.11.2000	21:30:08	148	1198	XXX	f			
24.11.2000	5:30:05	360	1289	X2 N20W05	0.9			
24.11.2000	15:30:05	360	1245	X2 N22W07	5			
24.11.2000	22:06:05	360	1005	X2 N21W14	< 0.8			
25.11.2000	1:31:58	360	2519	M8 N07E50	< 0.6			
26.11.2000	6:30:05	327	984	XXX	< 1			
26.11.2000	17:06:05	360	980	X4 N18W38	20			
13.12.2000	16:26:05	360	1067	XXX	f			
20.12.2000	10:30:05	126	1076	XXX	f			
25.12.2000	23:30:05	162	994	XXX	f			
28.12.2000	12:06:05	360	930	XXX	f			
14.01.2001	6:30:05	134	945	XXX	f			
20.01.2001	21:30:08	360	1507	M7 S07E46	f			
28.01.2001	15:54:05	360	916	M1 S04W59	1.5			
10.02.2001	5:54:05	360	956	XXX	f			
11.02.2001	1:31:48	360	1183	XXX	f			
24.03.2001	20:50:05	360	906	M1 N15E22	f			
29.03.2001	10:26:05	360	942	X1 N15W12	1			
01.04.2001	11:26:06	360	1475	M5.5 E90	f			
02.04.2001	22:06:07	244	2505	X > 17.5 n19w90	40			
03.04.2001	3:26:05	292	1613	X1 S21E83	< 40			
03.04.2001	19:50:05	165	1025	XXX	< 6			
			-		-			

Продолжение таблицы 1А								
1	2	3	4	5	6			
05.04.2001	9:06:06	205	1750	M1 S08E35	< 1			
05.04.2001	17:06:05	360	1390	M5 S24E50	< 0.5			
06.04.2001	19:30:02	360	1270	X10 S21E31	< 0.2			
07.04.2001	17:17:35	152	2198	XXXX	F			
09.04.2001	15:54:02	360	1192	M8 S21W04	1			
10.04.2001	5:30:00	360	2411	X2 S23W09	3			
11.04.2001	13:31:48	360	1103	M2 S22W27	< 1			
12.04.2001	10:31:29	360	1184	X2 S19W43	6			
15.04.2001	14:06:31	167	1199	X10 S20W85	300			
18.04.2001	2:30:05	360	2465	XXX	40			
20.04.2001	10:06:05	127	1160	XXX	< 0.3			
26.04.2001	12:30:05	360	1006	N17W31	f			
07.05.2001	12:06:06	205	1223	XXX	0.4			
10.05.2001	1:31:40	198	1056	XXX	f			
15.05.2001	18:52:05	195	1280	XXX	f			
25.05.2001	17:26:06	208	930	XXX	f			
30.05.2001	0:06:07	216	2087	XXX	f			
15.06.2001	15:56:27	360	1701	XXX	1.5			
20.06.2001	19:54:05	360	1407	XXX	f			
24.06.2001	7:31:52	360	1094	XXX	f			
26.06.2001	12:30:05	161	997	XXX	f			
19.07.2001	10:30:22	166	1668	M1.5 S08W62	f			
15.08.2001	23:54:05	360	1575	XXX	150			
25.08.2001	16:50:05	360	1433	X5 S17E34	f			
03.09.2001	18:35:07	207	1352	M2.5 s25e90	f			
09.09.2001	14:54:07	143	967	M3 S32E22	f			
17.09.2001	8:54:05	166	1009	XXX	f			
24.09.2001	10:30:59	360	2402	X3 S16E23	200			
01.10.2001	5:30:05	360	1405	M9.1 ?	10			
05.10.2001	10:30:27	360	1537	XXX	f			
09.10.2001	11:30:05	360	973	M1S28E08	f			
19.10.2001	16:50:05	360	901	X2 N15W29	1			
22.10.2001	15:06:05	360	1336	M7 S21E18	2			
25.10.2001	15:26:05	360	1092	X1 S16W21	< 0.1			
01.11.2001	14:30:05	195	1053	M1.5 S19E77	f			
04.11.2001	16:35:06	360	1810	X1 N06W18	300			

Продолжение таблицы 1А								
1	2	3	4	5	6			
17.11.2001	5:30:06	360	1379	M3 S13E42	f			
22.11.2001	20:30:33	360	1443	M3.8 S25W67	3			
22.11.2001	23:30:05	360	1437	M9.9 S13W38	130			
25.11.2001	23:06:54	182	1574	XXX	< 0.3			
14.12.2001	9:06:06	360	1506	M3.5 S12W75	f			
25.12.2001	11:30:05	360	1773	XXX	f			
26.12.2001	5:30:05	> 212	1446	M8 N08W54	200			
28.12.2001	20:30:05	360	2216	X3.4 s26e90	0.8			
01.01.2002	18:30:33	360	900	XXX	< 0.2			
08.01.2002	17:54:05	360	1794	XXX	f			
14.01.2002	5:35:07		1492	M4.4 s08e90	0.3			
27.01.2002	12:30:05	360	1136	XXX	0.6			
16.02.2002	6:30:05	360	1209	XXX	f			
20.02.2002	6:30:05	360	952	M5.1 N12W72	0.5			
02.03.2002	15:06:07	149	1131	XX	f			
10.03.2002	23:06:55	360	1429	M2.3 e90	f			
11.03.2002	23:30:05	360	950	XX	f			
14.03.2002	17:06:06	360	907	XX	f			
15.03.2002	11:30:06	> 148	1050	XX	f			
15.03.2002	23:06:06	360	957	M2 S08W03				
17.03.2002	10:34:00	187	989	M1 ?	f			
18.03.2002	2:54:06	360	989	M1 S16E27	0.4			
20.03.2002	23:54:05	> 160	1075	XX	f			
22.03.2002	11:06:05	360	1750	M1 ?	f			
01.04.2002	13:05:06	126	1062	XX	f			
02.04.2002	11:10:05	243	915	XX	f			
17.04.2002	8:26:05	360	1240	M2.6 S14W36	0.3			
21.04.2002	1:27:20	360	2393	X1.5 S14W64	200			
30.04.2002	23:26:05	199	1103	XX	f			
10.05.2002	17:06:05	120	1154	XX	f			
22.05.2002	0:06:06	186	1246	M1 N17E38	f			
22.05.2002	3:50:05	360	1557	XX	0.5			
26.05.2002	12:29:20	219	1069	XX	f			
27.05.2002	13:27:18	> 161	1106	XX	f			
28.05.2002	16:26:05	360	1244	XX	f			
30.05.2002	5:06:05	144	1625	M1.3 n11w90	f			
30.05.2002	23:26:05	184	1433	M2.4 ?	f			
					. I			

1	2	3	4	5	6
05.06.2002	12:43:35	360	991	XXX	f
26.06.2002	8:06:05	123	1433	XXX	f
27.06.2002	22:33:20	> 228	1087	XXX	f
04.07.2002	20:06:05	168	957	XXX	f
07.07.2002	11:30:31	> 228	1423	M1 W90	0.6
09.07.2002	19:31:48	360	1076	XXX	f
15.07.2002	20:30:05	360	1151	X6 N19W01	f
15.07.2002	21:30:05	> 188	1300	M1.8 ?	f
16.07.2002	16:02:58	360	1636	XXX	< 0.8
18.07.2002	8:06:08	360	1099	X2 N19W30	< 0.15
18.07.2002	19:31:47	360	2191	xxx E	0.6
19.07.2002	16:30:05	360	2047	XXX	< 0.15
20.07.2002	22:06:09	360	1941	X3.3 ?	0.1
23.07.2002	0:42:05	360	2285	X8 S13E72	< 0.2
03.08.2002	19:31:49	138	1150	X1.0 S16W76	f
06.08.2002	18:25:48	134	1098	XXX	f
14.08.2002	2:30:05	133	1309	M2 N09W54	0.2
16.08.2002	6:06:05	162	1378	M2 N07W83	f
16.08.2002	12:30:05	360	1585	M5 S14E20	f
20.08.2002	1:54:05	> 157	961	M4 S10W36	0.15
20.08.2002	8:54:31	> 122	1099	M2 S10W38	< 0.15
22.08.2002	2:06:06	360	998	M5.4 S07W62	7
23.08.2002	8:50:05	143	999	M1 S03E35	f
24.08.2002	1:27:19	360	1913	X3 S02W81	80
30.08.2002	3:06:05	200	1111	XXX	f
05.09.2002	16:54:06	360	1748	XXX	f
06.09.2002	13:31:49	360	909	XXX	0.2
17.09.2002	8:06:05	249	960	XXX	f
23.09.2002	0:06:05	140	960	XXX	f
13.10.2002	23:54:05	264	1009	M2 S17E83	f
14.10.2002	14:54:05	360	1694	XXX	f
23.10.2002	2:50:05	119	1052	XXX	f
25.10.2002	18:06:05	132	1030	M1 N28W11	f
27.10.2002	23:18:13	360	2115	XXX	f
03.11.2002	17:30:05	151	982	XXX	f
09.11.2002	13:31:45	360	1838	M5 S12W29	1
	1				1

Продолжение таблицы 1А

1	2	3	4	5	6
10.11.2002	3:30:11	282	1670	M2 S12W37	< 0.4
16.11.2002	7:12:05	360	1185	XXX	f
18.11.2002	10:36:05	119	1008	XXX	f
19.11.2002	3:06:05	123	938	XXX	f
24.11.2002	20:30:05	360	1077	XXX	f
08.12.2002	23:54:05	360	1339	XXX	f
19.12.2002	22:06:05	360	1092	M12 N15W09	4
21.12.2002	2:30:05	225	1072	XXX	f
22.12.2002	3:30:11	272	1071	M1 N23W42	f
21.01.2003	15:30:05	201	1011	M1.5 S07E90	f
27.01.2003	22:23:27	267	1053	XXX	f
21.02.2003	11:30:05	254	1026	XXX	f
18.03.2003	12:30:05	209	1601	X1 S15W46	f
18.03.2003	13:54:05	360	1042	XXX	f
19.03.2003	2:30:05	360	1342	XXX	f
22.04.2003	7:36:3	171	918	XXX	f
23.04.2003	1:27:14	248	916	M5 M22W25	0.1
27.05.2003	22:06:05	123	1122	XXX	f
27.05.2003	23:50:05	360	964	M8 S07W17	f
28.05.2003	0:50:05	360	1366	X2 S07W20	0.4
29.05.2003	1:27:12	360	1237	M8 S3W37	< 0.2
31.05.2003	2:30:19	360	1835	X1 S07W65	2.5
02.06.2003	0:30:07	172	1656	M6 S06W90	f
02.06.2003	8:54:05	161	980	M4 S07W89	f
05.06.2003	20:06:05	239	1458	XXXX	0.1
14.06.2003	5:30:06	121		M1S06E89	< 0.08
15.06.2003	14:30:05	140	937	XXX	f
15.06.2003	23:54:05	360	2053	X1 S07E80	0.1
17.06.2003	23:18:14	360	1813	M5 S08E58	0.08
05.10.2003	11:54:06	118	1499	XXX	f
21.10.2003	3:54:05	360	1484	XXX	f
22.10.2003	20:06:05	134	1085	M8 S18 E78	f
23.10.2003	8:54:05	> 23	1406	X5 S21 E88	f
24.10.2003	2:54:05	123	1055	M7 S19E72	f
26.10.2003	6:54:30	> 20	1371	X1 S15E44	f
26.10.2003	17:54:05	> 17	1537	X1 N02W38	9
27.10.2003	8:30:05	144	1322	M2 N00W45	1

Продолжение таблицы 1А

1	2	3	4	5	6
28.10.2003	11:30:05	360	2459	X10 S18E08	1000
29.10.2003	20:54:05	360	2029	X10 S19W02	500
02.11.2003	9:30:05	360	2036	XXX	0.7
02.11.2003	17:30:05	360	2598	X9 S14W56	100
04.11.2003	12:06:06	360	1208	XXX	< 0.6
04.11.2003	19:54:05	360	2657	X10 S18W83	10
06.11.2003	17:30:05	360	1523	XXX	< 0.8
07.11.2003	15:54:05	360	2237	XXX	< 0.2
09.11.2003	6:30:05	360	2008	XXX	f
11.11.2003	2:30:07	360	1359	XXX	f
11.11.2003	13:54:05	360	1315	M1 S03W51	f
11.11.2003	15:54:05	128	1785	XXX	f
12.11.2003	10:54:06	360	1197	XXX	f
13.11.2003	9:30:05	217	1141	M1 N04E81	f
15.11.2003	17:50:05	148	1375	XXX	f
17.11.2003	9:26:05	> 24	1061	M3 S01E33	f
18.11.2003	8:50:05	360	1660	M2 E18	f
18.11.2003	9:50:05	> 19	1824	M3 E18	f
02.12.2003	10:50:05	> 15	1393	S19W89	0.4
06.01.2004	8:53:06	166	1469	M5 E90	f
07.01.2004	4:06:07	171	1581	M3 N02E76	f
07.01.2004	10:30:29	182	1822	M6 N06E75	f
08.01.2004	5:06:05	144	1713	M1 N03E83	f
20.01.2004	0:06:05	360	965	XXX	f
06.04.2004	13:31:43	360	1368	M2 S18E15	f
08.04.2004	10:30:19	360	1068	XXX	f
11.04.2004	4:30:06	314	1645	M1 SW16W46	0.3
11.04.2004	11:54:05	360	1132	XXX	< 0.1
23.05.2004	11:06:06	360	988	XXX	f
02.06.2004	23:15:44	136	1102	XXX	f
03.06.2004	16:50:05	179	1226	XXX	f
04.06.2004	7:50:05	> 27	1306	XXX	f
05.07.2004	23:06:05	360	1444	XXX	f
06.07.2004	20:06:06	360	1307	XXX	f
25.07.2004	14:54:05	360	1333	M1 N08W33	0.8
29.07.2004	12:06:05	360	1180	XXX	f

Продолжение таблицы 1А

1	2	3	4	5	6
31.07.2004	5:54:05	> 19	1192	XXX	f
08.08.2004	8:54:05	360	1004	XXX	f
04.09.2004	6:54:0 5	360	1067	XXX	f
05.09.2004	20:58:41	> 17	1173	XXX	f
12.09.2004	0:36:06	360	1328	M4.8 N03E49	f
03.11.2004	16:06:05	360	1068	M3 N09E38	f
04.11.2004	23:30:05	> 29	1055	M3 N08E18	f
06.11.2004	2:06:05	> 21	1111	M2 E06	f
07.11.2004	16:54:05	360	1759	X2 N09W17	4
09.11.2004	17:26:06	360	2000	M9 N08W51	0.8
10.11.2004	2:26:05	360	3387	X2 N09W49	10
03.12.2004	0:26:05	360	1216	M1 N08W02	f
30.12.2004	10:57:06	> 17	1247	M2 E53	f
30.12.2004	22:30:05	360	1035	M3 N04 E46	f
15.01.2005	6:30:05	360	2049	M9 N16E04	0.7
15.01.2005	23:06:50	360	2861	X2 N15W05	10
17.01.2005	9:30:05	360	2094	M ?	3
17.01.2005	9:54:05	360	2547	X3.8 N15W25	300
19.01.2005	8:29:39	360	2020	X1 N16W51	6
31.01.2005	7:31:44	> 22	1447	XXX	f
01.02.2005	11:06:07	360	1380	XXX	f
17.02.2005	0:06:05	360	1135	XXX	f
02.05.2005	22:26:22	148	955	XXX	f
05.05.2005	20:30:05	360	1180	XXX	f
06.05.2005	11:54:28	129	1144	M1 S04W76	f
06.05.2005	17:28:31	360	1128	XXX	f
13.05.2005	17:12:05	360	1689	M8 N12E11	0.7
03.06.2005	12:32:10	360	1679	M1E90	f
28.06.2005	17:06:05	360	1303	XXX	f
09.07.2005	22:30:05	360	1540	M2 N12W28	f
13.07.2005	14:30:05	360	1423	M5 N11W90	0.2
14.07.2005	10:54:05	360	2115	X1 N11W90	2
17.07.2005	11:30:05	360	1527	XXX	0.8
21.07.2005	3:54:05	360	925	XXX	f
24.07.2005	11:30:07	360	1258	XXX	f
24.07.2005	13:54:05	360	2528	XXX	f
24.07.2005	22:30:05	360	1234	XXX	f

Продолжение таблицы 1А

1	2	3	4	5	6
25.07.2005	11:06:05	360	1660	XXX	f
25.07.2005	21:54:05	> 20	1570	XXX	f
26.07.2005	4:54:29	360	1458	XXX	f
26.07.2005	9:30:05	> 19	1588	XXX	0.5
27.07.2005	4:54:05	360	1787	M3 N11E90	< 0.4
28.07.2005	22:06:20	> 21	1478	M3 N09E82	< 0.4
30.07.2005	6:50:28	360	1968	X1 N12E60	< 0.3
22.08.2005	1:31:48	360	1194	M2.5 S11W54	0.2
22.08.2005	17:30:05	360	2378	M5 S13W65	6
23.08.2005	14:54:05	360	1929	M2 S14W90	< 0.6
25.08.2005	4:54:05	146	1327	M6 N09E80	f
29.08.2005	10:54:05	360	1600	XXX	0,1
31.08.2005	22:30:05	360	1808	XXX	0.3
02.09.2005	0:30:05	360	1384	XXX	< 0.3
03.09.2005	3:12:05	360	1672	XXX	f
05.09.2005	9:48:05	360	2326	XXX	f
06.09.2005	20:00:07	126	1291	M1 S12E88	f
09.09.2005	19:48:05	360	2257	X8 S12E67	< 40
10.09.2005	21:52:07	360	1893	X2 S13E47	< 20
11.09.2005	13:00:53	360	1922	M3 S16E39	< 6
13.09.2005	20:00:05	360	1866	X1 S09E10	1
06.07.2006	8:54:04	360	911	M2 S09W34	0.3
03.11.2006	19:31:45	> 20	1349	XXX	f
05.11.2006	17:54:04	196	1398	XXX	f
06.11.2006	17:54:04	360	1994	M1 N00E89	f
13.12.2006	2:54:04	360	1774	X4 S06W23	250
14.12.2006	22:30:04	360	1042	X1 S06W46	10
25.01.2007	6:54:04	360	1367	XXX	f
31.12.2007	1:31:40	164	995	XXX	f

Продолжение таблицы 1А