УДК 551.510.535

Моделирование алгоритма автоматической обработки результатов наклонного зондирования ионосферы с коррекцией параметров модели ионосферы

А.В. Кузьмин, Н.А. Чалкина

Проведен синтез алгоритма автоматической обработки данных наклонного зондирования ионосферы (H3). Предлагается алгоритм выделения и классификации модов F2 на ионограммах H3 содновременной коррекцией параметров региональной модели ионосферы. Синтез алгоритма проведен на основе отношения максимального правдоподобия. Приводятся результаты моделирования алгоритма в средних широтах в суточно-сезонном цикле при высокой, средней и низкой активности Солнца. Обсуждаются результаты моделирования и полученные точности коррекции параметров модели.

Ключевые слова: диагностика ионосферы, наклонное радиозондирование ионосферы, модель ионосферы, автоматическая обработка ионосферных данных.

Введение

Наклонное зондирование ионосферыполучает все большее распространение для целей диагностики ионосферы [1, 2]. Успехи, достигнутые в автоматической обработке результатов НЗ [3, 4, 5] позволяют оперативно обрабатывать ионограммы НЗ с оценкой основных характеристик распространения на трассах зондирования. Может быть осуществлено восстановление профиля электронной концентрации (N(h)-профиля) по данным НЗ в тех или иных приближениях. Однако, вопрос о том какую географическую точку он характеризует остается не совсем ясным.

В данной работе проводится синтеза алгоритма обнаружения и классификации время-частотной характеристики (ВрЧХ) модов 1F2 на ионограммах H3 на основе адаптивного изменения параметров модели ионосферы. Параметры модели ионосферы (число солнечных пятен Rz и ионосферный индекс IG [6]) подбираются в отличие от [3], где используется критерий минимума среднего квадрата отклонений, на основе критерия отношения максимального правдоподобия [7], что обеспечивает более высокую достоверность решений. Далее эти индексы могут использоваться в качестве региональных при проведение расчетов траекторий распространения радиоволн.

Кузьмин Александр Васильевич, ФГБУ «ИПГ», старший научный сотрудник, т. 89269022893, e-mail: kuzminalv2010@yandex.ru .

Чалкина Наталья Александровна, МГУ, аспирант, e-mail:chalkinan@mail.ru.

В критерии учитывается наличие пропусков сигналов по частоте и несоответствие модельных расчетов наблюдаемым за счет введения дополнительного механизма «штрафных» функций, что позволяет достигнуть единственности решений при расширенном диапазоне параметров модели ионосферы.

Проведенное в условиях утра, дня, вечера, ночи, всех сезонов при низкой, высокой и средней активности Солнца математическое моделирование позволило получить статистические оценки эффективности предлагаемого алгоритма и окончательно определить его архитектуру. Результаты обработки экспериментальных ионограмм НЗ подтвердили возможность использования предлагаемого подхода.

1. Решающее правило

Алгоритм коррекции параметров модели ионосферы по данным H3 синтезируется путем одновременного решения задач обнаружения и классификации трека 1F2 (включая верхние лучи, следы обыкновенной и необыкновенной компоненты) на ионограмме H3 с одновременным определением оптимального в смысле выбранного критерия ионосферного индекса IG, являющегося параметром модели ионосферы IRI [6]. В подходах, используемых ранее (см., например, [3]) использовался критерий минимума среднего квадрата отклонения экспериментальных времен прихода сигналов H3 от расчетных модельных. Как учитывались разрывы в следах за счет высокого уровня помех на некоторых частотах и отличия в экспериментальных и расчетных максимальноприменимых частотах (МПЧ) не ясно.

Для учета этих факторов в критерии выделения и классификации трека 1F2 введены штрафные функции. Штрафные санкции также увеличиваются в случае, если верхний луч не обнаружен, но присутствует в модели.

В этом случае, используя отношение максимального правдоподобия при проверке простой гипотезы против сложной альтернативы [7], можно записать следующий критерий

$$\max_{IG}\left\{\left(\frac{1}{\sigma_0}\exp\left\{-\frac{1}{2}\Delta_0^2\right\}\right)^{n_{npon}}\prod_1^n\left[\frac{1}{\sqrt{2\pi}\sigma_k}\exp\left\{-\frac{(x_k-\xi_k)^2}{2\sigma_k^2}\right\}\frac{1}{p_0}\right]\right\} > P, \quad (1)$$

где *x_k* – время прихода сигнала H3;

ξ_k – расчетное значение времени прихода сигнала при данном *IG*;

σ_к – флуктуация задержки сигнала;

σ₀ – СКО флуктуаций задержки сигнала;

△₀ – максимальное нормированное отклонение времени прихода сигнала НЗ от модельного значения;

*p*₀ – вероятность появления ложного сигнала;

n – количество точек (частот) выделенного трека;

n_{npon} – число пропусков сигналов;

Р – пороговый уровень обнаружения трека.

То значение IG, при котором расчетные данные с максимальной вероятностью в смысле этого критерия соответствуют сигнальной информации H3, используется в качестве оптимального для коррекции параметров модели IRI. В данном критерии величина Δ_0 определяет штрафные санкции как за пропуск точки трека внутри диапазона от минимально наблюдаемой частоты (МНЧ) до МПЧ Х-го следа, так и за несоответствие экспериментальных и расчетных МНЧ и МПЧ. При необходимости данный учет можно проводить с различными весами Δ_0 для пропусков и несоответствия частот,вводя дополнительный сомножитель в критерий.

Запись в данном виде обусловлена необходимостью учета несоответствия модельной и расчетной ВрЧХ не только по частотным границам, но и по форме. Решение о принадлежности точки треку принимается в том случае, если квадрат разницы $(x_k - \xi_k)^2 < \varepsilon$, где ε – величина, определяемая из допустимой флуктуационной ошибки отклонения времени прихода сигнала от истинного значения. На этапе отбора точек значение x_k может соответствовать искомому моду, следу другого мода распространения, помеховой отметке. Непосредственный учет этого квадрата отклонения приводит к ошибкам идентификации, а введение ограничения позволяет стабилизировать решение.

2. Построение модели

Структурная схема моделирования приведена на рисунке 1. Моделирование начинается с задания исходных данных (блок «Ввод исходных данных»). В качестве исходных данных задавались активность Солнца $IG_0=Rz_0$ (20, 70, 150), дата и сезон (зима – 15 января, весна – 15 апреля, лето – 15 июля, осень – 15 октября), географические координаты начала и конца трассы H3, процент отклонения модельного индекса IGot истинного (δIG), количество реализаций.

В блоке формирования ВрЧХ с помощью библиотеки ВрЧХ и модели IRI для индекса IG₀ формируются ВрЧХ H3 по всем ионосферным слоям возможным на данной трассе в данный период в виде массива зависимостей времен прихода сигналов на дискретной сетке частот $\{\tau_i(f_k)\}$, где i – индекс мода, k – номер частоты. В общем случае расчет проводится по всем регулярным ионосферным слоям для верхнего и нижнего луча и двух магнитоионных компонент с учетом горизонтальной неоднородности ионосферы [1, 8]. Энергетические потери при проведении расчетов не учитывались.

Организуется цикл по реализациям. Реализация формируется в блоке «Модель измерений». Каждая реализациям получается путем «размытия» времен прихода сигналов по времени

 $\tau_{\exists i}(f_k) = \tau_i(f_k) + \boldsymbol{\mathcal{E}}_{ik},$

где \mathcal{E}_{ik} – случайная величина, распределенная по нормальному закону с нулевым математическим ожиданием и СКО σ_{ε} , и добавлением шумовых отметок на поле ионограммы НЗ.

Добавление шумовых отметок осуществляется с помощью датчика случайных чисел равномерно распределенных в интервале анализируемого диапазона времен прихода сигналов. Интенсивность шумовых отметок регулируется вероятностью ложных тревог ~10⁻³. Полученные отметки упорядочиваются по времени прихода. Пример такой реализации ионограммы дан на рисунке 2.

Далее в цикле оптимизации осуществляется собственно поиск оптимального значения *IG* по критерию (1). Поиск оптимального решения осуществляется в интервале $\pm \delta IG \times IG_0$ методом градиентного спуска. Максимальное значение $IG_0=0,4$ было определено исходя из единственности экстремума критерия (1), что по критериям возмущенности соответствует умеренно возмущенной ионосфере. Поиск прекращался, как только разница между текущим и предыдущим значениями IG становилась меньше 0,1. Пример оптимизации представлен на рисунке 3. На рисунке представлен результат моделирования на трассе длинной 2500 км, в условиях средней активности Солнца для 15 апреля. Жирными красными линиями показан результат выделения и классификации следов обыкновенной и необыкновенной составляющих мода 1F2.

Обработка результатов включала расчет средних отклонений и СКО найденных оптимальных значений IG от истинных.

3. Результаты моделирования

Моделирование проводилось в несколько этапов. На первом предполагалась ситуация, в которой на этапе первичной обработки информации H3 проведена поляризационная селекция, и след необыкновенной компоненты отсутствует на ионограммах. Статистическая обработка результатов осуществлялась для условий низкой (IG=Rz=20), средней (IG=Rz=70) и высокой (IG=Rz=150) солнечной активности, всех сезонов и времен суток (утро, день, вечер, ночь). Результаты обработки в виде гистограмм, показывающих распределение разницы между значением параметра IGopt, найденного алгоритмом, и истинного, даны на рисунке 4. Ионосферный индекс изменялся в пределах $\pm 40\%$ от истинного. Получено, что для каждого уровня активности более чем в 95% случаев значение глобального ионосферного индекса определяется с точностью не хуже 5%. При этом среднее значение абсолютных отклонений меньше 1, СКО не превышает 1; среднее значение относительных отклонений составляет менее 1% от имитируемого IG.

Полученный результат показывает возможность коррекции параметров модели ионосферы по данным НЗ предложенным методом в случае отсутствия следа необыкновенной компоненты на ионограмме НЗ. Ошибка коррекции в данных приближениях не будет превышать 1%.

На следующем этапе разыгрывалась ситуация, когда на ионограммах H3 присутствовали следы отражений необыкновенной компоненты, а модельные представления её не давали. Результаты моделирования для условий идентичных предыдущему эксперименту представлены на рисунке 5. Не учет необыкновенных лучей в случае присутствия на ионограмме Х-оймагнитоионной компонентыобуславливает ее выделение как мод 1F2. Из приведенных гистограмм видно, что вероятность неправильного выделения трека 1F2 тем выше, чем выше солнечная активность. Все такие случаи выявлены для дневных условий, а значительная их часть произошла в зимний период, что иллюстрирует рисунок. 6. На рисунке 6 показана гистограмма распределения отклонений найденного ионосферного индекса от истинного, полученная для дневных условий зимнего периода при высокой активности Солнца. Явно видно двумодальное распреде-

ление, средняя величина ошибок составила 4,6%, а количество перепутываний ~50%.

Отсюда следует, что для корректной работы алгоритма необходимо формировать образ, учитывающий обе магнитоионные компоненты следа 1F2. Гистограмма, показывающая распределение отклонений в этом случае в условиях высокой солнечной активности показана на рисунке 7. Максимальная величина СКО ошибок определения ионосферного индекса в данном случае не превысило 0,5%.

Заключение

Разработан алгоритм коррекции параметров модели ионосферы по данным НЗ. Решающее правило основано на поиске наилучшего совпадения модельных представлений о модах обыкновенной и необыкновенной компонент с учетом верхних лучей мода 1F2 с экспериментальными данными. Проведенное математическое моделирование в условиях различной солнечной активности суточно-сезонного цикла показало, что точность определения ионосферного индекса IG не хуже 1%.

Литература

- 1. Дэвис. К. Радиоволны в ионосфере. М.: Мир, 1973. 502 с.
- 2. Подлесный А.В., Брынько И.Г., Куркин В.И., Березовский В.А., Кисилев А.М., Петухов Е.В. «Многофункциональный ЛЧМ-ионозонд для мониторинга ионосферы». 2013.
- Благовещенский Д.В., Благовещенская Н.Ф., Борисова Т.Д., Черкашин Ю.Н. Коррекция модели ионосферы по экспериментальным данным наклонного зондирования на субавроральных трассах. Исследования по геомагнетизму, аэрономии и физике Солнца. М:, Наука вып.88,1989, с. 174-187.
- 4. Иванов В.А., Иванов Д.В., Рябова Н.В., Егошин А.Б., Лащевский А.Р. «Комплексный адаптивный алгоритм обработки ионограмм вертикальнонаклонного зондирования ионосферы». В сборнике: Гелиогеофизические исследования. 2013.
- 5. Подлесный А.В., Брынько И.Г., Куркин В.И., Березовский В.А., Киселев А.М., Петухов Е.В. «Многофункциональный ЛЧМ-ионозонд для мониторинга ионосферы». В сборнике: Гелиогеофизические исследования. 2013.
- 6. D. Bilitza. Ionospheric Models for Radio Propagation Studies. Raytheon ITSS, NSSDC, GSFC, Code 632, Greenbelt, MD 20771, USA, IEEE Press., 2002.
- 7. Б.Р. Левин. Теоретические основы статистической радиотехники. Кн.2., «Советское радио», М. 1968.
- 8. Е.М.Ковалевская, Т.С. Керблай. Расчет расстояния скачка, максимально применимой частоты, углов прихода радиоволны с учетом горизонтальной неоднородности ионосферы. М. Наука. 1971.