РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ГЕОФИЗИЧЕСКИХ РИСКОВ

УДК 551.509.326

СИНТЕЗ НЕЙРОСЕТЕВЫХ И ГОЛОГРАФИЧЕСКИХ МЕТОДОВ ОБРАБОТКИ ДАННЫХ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ

С.Н. Андреев, В.Г. Фирсов

Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина», г. Воронеж

Рассматривается подход к решению задачи распознавания спутниковой информации, основанный на синтезе нейросетевых и голографических методов обработки данных.

КЛЮЧЕВЫЕ СЛОВА: РАСПОЗНАВАНИЕ СПУТНИКОВОЙ ИНФОРМАЦИИ, НЕЙРОСЕТЕВЫЕ МЕТОДЫ ОБРАБОТКИ ДАН-НЫХ, ГОЛОГРАФИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ДАННЫХ.

В современных условиях национальная безопасность страны во многом определяется степенью реализации государством передовых достижений в информационной и технологической областях. Одним из основных способов достижения эффективного функционирования системы управления в быстро меняющейся обстановке является повышение уровня информационной поддержки процессов принятия решений и широкое внедрение информационных технологий в деятельность органов ситуационного управления [1]. Однако в ходе создания автоматизированных систем управления и систем информационной поддержки принятия решений, возникает проблема автоматизации распознавания ситуаций на основе данных дистанционного зондирования Земли, в том числе и спутниковых изображений. При этом классические методы распознавания образов (PO) уже не обеспечивают требуемого уровня оперативности и надежности решения указанных задач. Для решения данной проблемы в последнее время все шире привлекаются достижения смежных областей науки, к числу которых относятся искусственные нейронные сети (HC), генетические алгоритмы (ГА), а также методы, базирующиеся на представлениях теории нечетких множеств [2].

В силу того, что нечеткая логика (НЛ) предъявляет повышенные требования к вычислительной мощности и объему памяти процессора, разработчики процессоров НЛ проявляют повышенный интерес к оптическим информационным технологиям [3]. Перспективное направление здесь – разработка нейро-нечетких устройств, объединяющих гибкость и адекватность НЛ с вычислительной мощностью и способностью к самообучению искусственных НС на основе оптических (голографических) технологий [4]. Кроме того, следуя логике работ [5, 6, 7], иерархия структурно-функциональных блоков мозга определяется многоуровневым фракталом локальных динамичных систем типа нейросетевых ядер, для моделирования кооперативных свойств которых, помимо электродинамики целесообразно использовать, физику волновых интерференционных и голографических процессов. Таким образом, наличие глубоких аналогий между математическими обоснованиями искусственных HC, Фурье-голографией, НЛ и ГА, открывает перспективы для реализации всех вышеперечисленных методов на базе единого нейросетевого подхода.

В связи с вышеизложенным, целью данной работы является разработка методики построения саморазвивающихся искусственных HC, реализующих процесс PO на основе синтеза эволюционных методов моделирования и методов цифровой голографии.

Для достижения поставленной цели необходимо решить ряд задач, связанных с построением HC, выбором способа восприятия сетью исходных данных и внутреннего представления входного образа, а также организацией обучения этой HC.

Дальнейшие рассуждения основываются на предположении, что мозг генерирует опорные волны различной частоты $(f_1, f_2, ..., f_k)^*$ [6, 7], посредством которых, с определенной периодичностью, осуществляет «опрос» нейронов, т.е. реализует анализ входного изображения на разных частотах и сравнивает отклики на предъявляемые образы с ранее запомненными. При этом каждый нейрон, работая по принципу «вопрос – ответ», отвечает только на тот вопрос, на который «знает» ответ, как это делает, например, нейрон Гроссберга [2].

Математическим обоснованием применения искусственных HC обычно считается теорема А. Н. Колмогорова о представлении непрерывных функций *n* переменных в виде суперпозиции *m* непрерывных функций одной переменной.

Применительно к HC эта теорема была сформулирована Хехт-Нильсеном [8]: любую непрерывную функцию *F* от *n* переменных $\mathbf{x} = (x_1, x_2, ..., x_n)$ можно точно аппроксимировать с помощью простой трехслойной нейросети (с одним скрытым слоем), для чего достаточно подобрать m=2n+1 передаточных функций s_{ij} нейронов скрытого слоя.

В общем случае уравнение такой трехслойной НС можно представить в виде:

$$F(\mathbf{x}) = f\left(\sum_{j=1}^{m} \left[f_j\left(\sum_{i=1}^{n} s_{ij}(x_i)\right) \right] \right)$$
(1)

где s_{ij} – сенсорные функции, а f и f_j – функции активации нейронов, соответственно выходного и скрытого слоев, m – количество нейронов скрытого слоя HC.

Основу искусственных HC составляют формальные нейроны (Φ H) – абстрактные логические устройства, способные к обучению. Однако в настоящее время не существует эффективных методик выбора функций *s* и *f*, поэтому решение каждого нового класса задач с использованием HC требует разработки своей концепции построения её структуры и алгоритма функционирования [2].

Несмотря на то, что в настоящее время уже существует достаточно большое количество моделей ФН, имеющих значительное сходство с их биологическими аналогами [2], их использование для решения практических задач вызывает определенные трудности, связанные с большой вычислительной сложностью этих моделей. В связи с этим для решения практических задач необходимо найти компромисс между адекватностью сложных моделей и нетребовательностью к вычислительным ресурсам более простых моделей ФН. Так, в работе [5] была предложена модель модифицированного формального нейрона (МФН), уравнение которого имеет вид:

$$y = f\left(\bigwedge_{i=1}^{n} s_i(x_i)\right)$$
(2)

где f – функция активации; **A** – обозначает одну из используемых в конкретном нейроне операций агрегирования нечеткого вывода, например, объединения (Σ) или пересечения (Π) нечетких множеств; $x_1, x_2, ..., x_n$ – вектор входных сигналов, поступающих на *n* синапсов нейрона; s_i – синаптические функции сигмоидального или гауссова типа [2, 5].

Необходимо также отметить, что функцию F от n переменных можно точно аппроксимировать не только с использованием выражения (1), но и с помощью суммы n рядов Фурье:

$$F(\mathbf{x}) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} c_{j} \phi_{j}(x_{i}) \right)_{i} = \sum_{i=1}^{n} \left(\gamma_{i}(x_{i}) \right),$$
(3)

где $\gamma_i(x_i) = \sum_{j=1}^m c_j \phi_j(x_i)$ – ряд Фурье, ϕ_j – базисные функции, c_j – спектральные коэффициенты.

Учитывая, что при достаточной точности аппроксимации выражение (1) можно приравнять к (3) и представить в виде HC с сенсорным слоем нейронов в виде рядов Фурье:

$$F(\mathbf{x}) = f \sum_{j=1}^{m} \left(f_j \sum_{i=1}^{n} s_{ij}(x_i) \right) = g \sum_{i=1}^{n} \left(\sum_{j=1}^{m} c_j \phi_j(x_i) \right)_i = g \sum_{i=1}^{n} \left(\gamma_i(x_i) \right)$$
(4)

или в виде «Фурье-нейрона»:

$$y = g \sum_{i=1}^{n} \left(\gamma_i(x_i) \right), \tag{5}$$

[©] Институт прикладной геофизики имени академика Е.К.Федорова

где g – функция активации (в данном случае g(x)=f(x)), а $\gamma_i(x_i) = \sum_{j=1}^m c_j \phi_j(x_i)$ – «Фурье-синапсы»

нейрона, реализующие сложную реакцию на входной сигнал аналогично полю нечетких сенсорных нейронов [9], с *m*=2 элементарными (альтернативными) условиями.

Функциональная схема «Фурье-нейрона» (или НС с сенсорным слоем нейронов в виде рядов Фурье) (5) представлена на рисунке 1.

Очевидно, что по сути «Фурье-нейрон» (5) аналогичен МФН (1), т.е.

$$y = f\left(\bigwedge_{i=1}^{n} s_i(x_i)\right) = g\left(\sum_{i=1}^{n} \gamma_i(x_i)\right),\tag{6}$$

где f и g – функции активации нейронов; А – операция агрегирования вывода, в данном случае – объединение (Σ); $x_1, x_2, ..., x_n$ – вектор входных сигналов, поступающих на n синапсов нейрона; $s_i(x_i)$ и $\gamma_i(x_i)$ – синаптические функции, соответственно МФН и нейрона с «Фурье-синапсами». При этом функционирование «Фурье-синапсов» идентично сенсорным нечетким МФН [9], но с более сложной реакцией на входной сигнал.

Рис. 1. Функциональная схема «Фурье-нейрона» (НС с сенсорным слоем в виде рядов Фурье).

С учетом вышеизложенного и согласно [9], выражение для полносвязного нейросетевого ядра можно представить как

$$\mathbf{y}^{L} = f^{L} \left(\mathbf{A}_{i=1}^{nL} \mathbf{s}_{i}^{L} \left(\dots f_{i}^{l} \left(\mathbf{A}_{i=1}^{nl} \mathbf{s}_{i}^{l} \left[\mathbf{g}_{i}^{d} \left(\sum_{i=1}^{n^{d}} \boldsymbol{\gamma}_{i}^{d} \left(\mathbf{x}_{i} \right) \right) \right] \right) \dots \right) \right), \tag{7}$$

где l=1, 2, ..., L – номер слоя нейронов сети; d – слой нейронов, лежащий ниже слоя l; s_i^l – синаптическая функция *i*-го синапса нейрона слоя l; n^l – общее число синапсов нейрона слоя l; f_i^l – функции активации *i*-го нейрона слоя l; g_i^d – функция активации *i*-го «Фурье-нейрона» слоя d. Квадратными скобками выделен слой сенсорных нейронов.

Для упрощения примем, что функция активации «Фурье-нейрона» g(x)=x, т.е. линейна и равна ее аргументу. Тогда уравнение сенсорного «Фурье-нейрона» (5) примет вид:

$$y = \sum_{i=1}^{n} \gamma_i(x_i) , \qquad (8)$$

а выражение для полносвязного ядра НС:

$$\mathbf{y}^{L} = g^{L} \left(\mathbf{A}_{i=1}^{nL} s_{i}^{L} \left(\dots g_{i}^{l} \left(\mathbf{A}_{i=1}^{n^{l}} s_{i}^{l} \left[\sum_{i=1}^{n^{d}} \boldsymbol{\gamma}_{i}^{d} \left(\boldsymbol{x}_{i} \right) \right] \right) \dots \right) \right).$$
(9)

Восприятие изображений и внутреннее представление входного образа внутри HC предлагается реализовать на основе нейросетевого синтеза цифровых голограмм [5]. При этом опорный сигнал, для получения внутреннего голографического образа, генерируется нейросетью.

Осуществив ряд преобразований, позволяющих перейти к представлению входного образа в комплексной форме $B_i = |x_i| \exp\{i\varphi_i\}$, где *i* – мнимая единица, φ_i – фаза сигнала, получим уравнение сенсорного нейрона (6) в виде

$$y = f\left(\bigwedge_{i=1}^{n} s_i(\mathbf{B}_i)\right) = \left[\sum_{i=1}^{n} \gamma_i(\mathbf{B}_i)\right] = \left[\sum_{i=1}^{n} \gamma_i\left(\left|x_i\right| \exp\{i\,\varphi_i\}\right)\right].$$
(10)

Нетрудно заметить, что в тригонометрическом виде уравнение (10) при $\varphi_i=0$ и линейных функциях s_i и f представляет собой нейрон Гроссберга [2].

Перейдя к двухмерному представлению входного образа $B_{ij} = |x_{ij}| \exp\{i\varphi|_{ij}^{nm}\}$, где n, m – координаты точки вышележащего слоя l, в которую на частоте опорной волны $f^* = (f_1, f_2, ..., f_k)^*$ и со сдвигом фаз $\varphi|_{ij}^{nm}$ проецируется сигнал от элемента изображения нижележащего слоя d с координатами i, j, получим уравнение комплексного сенсорного «Фурье-нейрона» (8) в виде:

$$y_{nm}(\mathbf{x}) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} |x_{ij}^{nm}| \exp\left\{i \cdot 2\pi f^{*} + \varphi |_{ij}^{nm}\right\}.$$
 (11)

Очевидно, что выражение (11) представляет собой сигнал на выходе сенсорного слоя нейронов (рис. 2) в виде дискретной или цифровой голограммы Фурье (ГФ) [5]:

$$\Gamma_{nm} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \boldsymbol{B}_{ij}(f^*) \exp\left\{i \cdot 2\pi f^* + \varphi(r|_{ij}^{nm})\right\},\tag{1}$$

где Γ_{nm} – голографический портрет объекта в плоскости аксонов сенсорного слоя нейронов; $f^* = (n \cdot i) / N + (m \cdot j) / M$ – частотная характеристика «рассматриваемого» нейросетью изображения; $B_{ij}(f^*)$ и $\varphi(r|_{ij}^{nm})$ – амплитудно-частотная и фазовая характеристики голограммы в плоскости внутреннего сенсорного слоя НС соответственно; $N \times M$ – размер сенсорного и аксонного полей; i, j – координаты элемента изображения нижележащего, а n, m – вышележащего слоя; r – расстояние между точками с координатами (i, j) и (n, m).

Таким образом, голограммы, описываемые соотношением (12), представляют собой пространственный Фурье-спектр, и могут быть аппроксимированы комплексными МФН (11).

Заменив в выражении (7) ядра нейросети сенсорный слой нейронов (8) комплексными сенсорными «Фурье-нейронами» типа (11), получим:

$$y^{L} = g^{L} \left(\bigwedge_{i=1}^{n^{L}} s_{i}^{L} \left(\dots g_{i}^{d} \left(\bigwedge_{i=1}^{(N \times M)^{d}} s_{i}^{d} \left[y_{nm}^{d}(x_{ij}) \right] \right) \dots \right) \right),$$
(13)

где *N*×*M* – размер голограммы (в данном случае совпадает с размером входного изображения).

© Институт прикладной геофизики имени академика Е.К.Федорова

b_{ij} – отображение объекта наГ(n,т) – голографический портсенсорах НС рет объекта фазовый портрет объекта

Рис.1. Голографический портрет объекта на выходе сенсорного слоя нейронов.

Нейросетевое представление входного образа (изображения) в виде голограммы позволяет перейти от анализа комплекса отдельных параметров к анализу амплитудно-фазовых портретов как всего изображения, так и отдельных его частей, а также использовать оптические преобразователи входного сигнала и отказаться от часто применяемой на практике предобработки входного сигнала с целью добиться большей стабильности распознавания трансформированных образов, в том числе и с помощью дискретного преобразования Фурье [2].

Использование предложенного подхода позволяет перейти от нейросетевого анализа и распознавания непосредственно двухмерных изображений реальных объектов к распознаванию внутрисетевых голографических представлений (образов) этих объектов на основе анализа их амплитуднофазовых портретов и частотных спектров, а также осуществлять сжатие, компактное внутрисетевое хранение и использование сохраненных образов в качестве «опорных» при реализации ассоциативной памяти. Дальнейшее развитие предложенного подхода предполагает построение саморазвивающейся нейросетевой структуры, т.е. моделирование процесса самоорганизации HC, в процессе обучения. Реализовать самоорганизующуюся HC предлагается на основе учета закономерностей целенаправленного формирования нервной ткани у живых организмов [7], а также использования свойств самоподобия нейросетевых структур (рис. 3).

Рис.3. Разложение изображения на компоненты и их анализ с использованием нейросетевых ядер.

Целенаправленность формирования структуры HC достигается путем введения ограничений на размер сенсорного поля ядра N_{ex} [9], на степень перекрытия «поля зрения» K_p , на степень детализации изображений K_d^I по градациям яркости *I*, на глубину анализа нейросетевым ядром входных данных K_d и на степень сжатия информации K_s (рис. 4).

Рис.4. Формирование нейросетевого ядра.

Перечисленные параметры формируют хромосому реализующего обучение ГА [9] и полностью определяют структуру создаваемых нейросетевых ядер. Общая структура НС формируется по принципу самоподобия из нейросетевых ядер в процессе поиска оптимума отношений между характеристиками текстуры и характеристиками яркости изображения *I*, например, между размерностью $F_{I,n\times m}^{N} = f(N_2/N_1)$, где N_1 – общее число пикселей сенсорного поля, N_2 – число пикселей с яркостью $I \ge I_{n\times m}^{nopo2}$ для данной градации яркости, и значением градиента яркости $\overline{G}_{n\times m} = \Delta I/\Delta L$. С этой же целью может быть использована комплексная характеристика размерности участка изображения $F_{I,n\times m}^{s} = f(S_2/S_1)$, где S_1 – площадь основания сенсорного поля, S_2 – площадь поверхности создаваемой значениями яркости пикселей *I* изображения над основанием сенсорного поля. Также могут использоваться и другие параметры изображения [9].

Таким образом, при создании автоматизированных систем управления и информационной поддержки принятия решений, построение блока анализа и распознавания изображений, получаемых с использованием средств дистанционного зондирования, может быть осуществлено с применением саморазвивающихся искусственных HC, реализованных на основе синтеза эволюционных методов моделирования и методов цифровой голографии.

SYNTHESIS OF THE NEURAL NETWORKS AND HOLOGRAPICS METHODS DATA PRO-CESSING THE REMOTE FLEXING OF THE EARTH

S.N. Andreev, V.G. Firsov

The decision of the problem of the satellite information recognition based on the synthesis neuronets and holographic methods data processing.

KEYWORDS: RECOGNITION OF SATELLITE INFORMATION, NEURAL NETWORK DATA PROCESSING METHODS, HOLOGRAPHIC DATA PROCESSING METHODS.

ЛИТЕРАТУРА

- 1. Баранюк В.В. Основные направления создания единого информационного пространства ВС РФ. // Военная Мысль, № 11, 2004. С. 29–34.
- 2. Осовский С. Нейронные сети для обработки информации / пер. с польского И.Д. Рудинского. М.: Финансы и статистика, 2004. 344 с.
- 3. Васильев В.Н., Павлов А.В. Оптические технологии искусственного интеллекта. СПб: СПбГУ ИТМО, 2005. 99 с.
- 4. Белов П.А., Беспалов В.Г., Васильев В.Н., Козлов С.А., Павлов А.В., Симовский К.Р., Шполян-

ский Ю.А.. Оптические процессоры: достижения и новые идеи. // В кн.: Проблемы когерентной и нелинейной оптики, СПб, 2006. С. 6–36.

- 5. Ярославский Л.П. Цифровая обработка сигналов в оптике и голографии: Введение в цифровую оптику. М.: Радио и связь, 1987. С. 243–278.
- 6. Холманский А.С. Моделирование физики мозга / Квантовая Магия, т. 3, вып. 3, 2006. С. 3126–3155.
- 7. Смит К.Ю. М. Биология сенсорных систем / Пер. с англ. М.: БИНОМ. Лаборатория знаний, 2005. 583 с.
- 8. Hecht-Nielsen R. Neurocomputing. Amsterdam: Addison Wesley, 1991.
- Андреев С.Н. Применение эволюционных методов моделирования для построения саморазвивающихся нейронных сетей // Кибернетика и высокие технологии XXI века (С&Т-2009): сборник научных статей по материалам X международной научно-технической конференции (13-14 мая 2009 г.) / ВГУ, т.1, В.: ВГУ, 2009. С. 326–337.