ВОЗМУЩЕНИЯ ПЛОТНОСТИ ВЕРХНЕЙ АТМОСФЕРЫ НАД СЕЙСМООПАСНЫМИ РЕГИОНАМИ ПО ДАННЫМ БОРТОВОГО АКСЕЛЕРОМЕТРА «КАКТУС» НА КА «КАСТОР»

А.В. Тертышников, Скрипачев В.О.

According to the data on-board 'supersensitive' accelerometer 'Kaktus' 4 days before major earthquakes, the increase of the average density of the upper atmosphere above the earthquake-prone regions on the perigee and decrease of the average density a day before the earthquake was identified.

Key words: experiment, accelerometer, spacecraft, Atmosphere, density, earthquake and archive

По данным бортового «сверхчувствительного» акселерометра «Кактус» за 4 суток до сильных землетрясений выявлено увеличение среднего значения плотности верхней атмосферы над сейсмоопасными регионом на высоте перигея и уменьшение значения средней плотности за сутки до землетрясения. В 1 сутки после землетрясения всплеск значений средней плотности.

Ключевые слова: эксперимент, акселерометр, КА, атмосфера, плотность, землетрясения, архив.

Введение

За несколько суток до сильных землетрясений в верхней атмосфере над сейсмоопасными регионами неоднократно отмечались возмущения электронной плотности и температуры заряженных частиц [1, 2]. Проявление этих эффектов в вариациях плотности верхней атмосферы можно попытаться зафиксировать по наблюдениям за орбитами КА [3] с помощью систем контроля космического пространства, бортовых навигационных приемников КА, бортовых акселерометров КА [4].

Активные исследования плотности верхней атмосферы с помощью бортового «сверхчувствительного» акселерометра «Кактус» проводились после запуска французского КА «Кастор» (D-5A). Он был выведен на орбиту 17.05.1975 г. с космодрома Куру для определения аэродинамического торможения, давления солнечных лучей, аномалий гравитационного поля Земли и столкновений с метеорными частицами. Запланированная высота орбиты КА «Кастор» в апогее и перигее 1268 км и 272 км соответственно. Масса КА составляла 76 кг, высота корпуса, имеющего форму 26-гранника и максимальный поперечный размер составляли 0.8 м.

Акселерометр «Кактус» был рассчитан на измерение ускорений в диапазоне 10^{-5} — 10^{-9} g, с точностью $5 \cdot 10^{-10}$ g. Это обеспечивало самый низкий порог измерений по сравнению со всеми другими трехосными акселерометрами, существовавшими в то время. В приборе использовалась сферическая масса диаметром 40 мм из платиново-родиевого сплава, взвешенная в электростатическом поле внутри вакуумированного металлического корпуса. Эксперименты с акселерометром были рассчитаны на шесть месяцев [5].

Порядок обработки экспериментальных данных

Для диагностики возможных проявлений сейсмической активности Земли в микроускорениях, зафиксированных акселерометром «Кактус», из каталога Национальной Геологической службы США (USGS) были отобраны 37 землетрясений [6]. Из них несколько событий были объединены в одно, так как координаты эпицентров находились рядом друг с другом и временной интервал между землетрясениями не превышал 24 часов. За счет этого итоговое число анализируемых землетрясений уменьшилось до 24 (табл. 1).

Номер	Дата	Число	Широта,	Долгота,	Глубина,	Магнитуда
		землетрясений	град	град	КМ	
1	8.07	1	29.46	-113.35	33	6.5
2	20.07	5	-7.00	155.00	49	7.9-6.1
3	30.07	1	-10	123.80	16	6.1
4	6.08	1	-2.47	146.04	33	6.3
5	11.09	1	6.99	-104.28	33	6.4
6	24.09	1	-20.53	-173.99	33	6.5
7	24.09	1	-11.96	-14.49	33	6.1
8	29.09	1	-0.48	124.7	23	6.1
9	30.09	3	-4.93	102.2	33	6
10	3.10	2	30.30	62.33	11	6.7
11	7.10	1	0.9	-26.77	33	6.7
12	11.10	2	-24.5	-175.15	9	7.8
13	20.10	1	-16.26	-177.43	33	6.5
14	21.10	2	11.71	121.75	33	6.1
15	26.10	1	6.58	126.83	50	6.1
16	28.10	1	-22.86	-70.51	38	6.3
17	31.10	1	12.54	125.99	50	7.6
18	25.11	1	-9.15	156.7	33	6.1
19	29.11	1	19.33	-155.02	5	7.2
20	30.11	1	10.56	145.9	32	6.6
21	9.12	1	-14.79	-173	33	6.4
22	17.12	1	5.28	95.91	17	6.2
23	19.12	1	-11.75	164.8	33	6
24	26.12	1	-16.26	-172.47	33	7.8

Таблица 1 – Перечень используемых сейсмических событий

При выборе данных акселерометра «Кактус» применялись следующие критерии: по широте и долготе измерения проводились в диапазоне ±5 градусов от координат эпицентра и по дате в диапазоне ±7 суток. При этом отборе число анализируемых событий уменьшилось до 13. (№№ 3, 4, 5, 6, 8, 9, 14, 15, 17, 18, 20, 22, 23). Для них были построены карты пространственного распределения наблюдений плотности верхней атмосферы бортовым акселерометром.

В расчетах использовалась модель изотермической атмосферы, в которой зависимость плотности воздуха ρ от высоты представляется в виде [7]:

$$\rho = \rho_0 \exp\left(-\frac{h - h_1}{H}\right),\tag{1}$$

где H – высота однородной атмосферы, равная высоте некоторого фиктивного столба однородной атмосферы, плотность которого всюду равна ρ_0 на высоте перигея h_1 .

С помощью (1) рассчитывались значения ρ_0 , которые наносились на карту сейсмоактивного региона.

Анализ результатов

В первом приближении перед указанными землетрясениями отмечались повышенные значения математического ожидания невязок между результатами расчета оценок плотности верхней атмосферы с использованием данных бортового акселерометра «Кактус» и модели ГОСТ 25645.166-2004 «Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов ИСЗ».

В полученных результатах была отмечена сильная «пилообразность» как средних значений ρ_0 , так и текущих значений плотности атмосферы ρ . Поэтому рассчитанные значения средних ρ_0 для каждого землетрясения были дополнены интерполированными значениями плотности (рис. 1).

Рис. 1 Изменение среднесуточных значений ρ_0 над сейсмоопасными регионами без учета землетрясения № 17. Землетрясение в 8 сутки.

В большинстве анализируемых случаев геомагнитная обстановка была спокойной и значения геомагнитных индексов $K_p < 4$. Только при 17 землетрясении наблюдалось повышенное значение индекса $K_p = 5.89$, что могло оказать влияние на плотность атмосферы. Поэтому это землетрясение был исключено из дальнейшего анализа.

Статистические характеристики анализируемых рядов представлены на рис. 2. За 4 суток до сейсмического события наблюдается увеличение среднего значения плотности и дисперсия значений средней плотности. Уменьшение значения средней плотности за сутки до землетрясения может быть проявлением эффекта «сейсмического затишья». В 1 сутки после землетрясения всплеск значений средней плотности и ее дисперсии может быть обусловлен произошедшим землетрясением.

Рис. 2 – Изменение осредненных оценок плотности (2а) и дисперсии (2б) над сейсмоопасными регионами. 0 – сутки землетрясения

Полученные результаты хорошо согласуются с результатами [3]. По данным регулярных наблюдений за характеристиками движения космических объектов наземными радиотехническими комплексами, входящими в систему воздушно-космической обороны Северной Америки (NORAD). Было выявлено, что за две недели до землетрясений нарастают вариации торможения низкоорбитальных КА, а за 3-6 суток до сильных коровых землетрясений с эпицентрами на суше торможение низкоорбитальных КА в верхней атмосфере усиливается [3]. Наличие этих эффектов и выявленных аномалий по данным акселерометра «Кактус» подтверждает гипотезу о возмущениях нейтральной компоненты в околоземном космическом пространстве перед сильными землетрясениями.

Заключение

В результате обработки данных о микроускорениях французского КА «Кастор» на высоте перигея выявлено:

- 1. Повышенная плотность верхней атмосферы над сейсмоопасным регионом за 4 суток до сильного тектонического землетрясения;
- 2. Увеличение значений средней плотности атмосферы над сейсмоопасным регионом на следующие сутки после землетрясения;
- 3. Низкие значения дисперсии в вариациях плотности атмосферы над сейсмоопасным регионом через двое суток после землетрясения.

Авторы благодарны профессорам Липеровскому В.А. и Волкову И.И. за полезные советы и внимание к полученным результатам.

Литература

- 1. *Тертышников А.В.* Сейсмоозонные эффекты и проблема прогнозирования землетрясений. СПб.: ВИКА, 2000.
- Тертышников А.В., Липеровская Е.В., Скрипачев В.О. Первые оценки возмущений плотности верхней атмосферы над сейсмоопасными регионами по данным бортового акселерометра на космическом аппарате/ Материалы V международной конференции "Солнечно-земные связи и физика предвестников землетрясений" 2 - 7 августа 2010 г. с. Паратунка, Камчатский край. – Паратунка, 2010. С. 394-397.
- 3. *Тертышников А.В., Чернявский Г.М., Скрипачев* В.О. Вариации торможения космических аппаратов в верхней ионосфере перед сильными землетрясениями // Доклады академии наук, 2009, том 424, № 4.
- 4. *Moe K., Moe M. M.* The high-latitude thermospheric mass density anomaly: A historical review and a semi-empirical model // Journal of Atmospheric and Solar-Terrestrial Physics. vol. 70, Issue 5, 2008. p.794.
- 5. http://epizodsspace.narod.ru/bibl/ejeg/1976/76.html.
- 6. National Earthquake Information Center NEIC. /http://earthquake.usgs.gov/regional/neic/.
- 7. Инженерный справочник по космической технике / Под ред. Солодова А.В. М.: Воениздат, 1977. 430 с.